Preferred Language
Articles
/
jih-429
Adaptive Canny Algorithm Using Fast Otsu Multithresholding Method
...Show More Authors

   In this research, an adaptive Canny algorithm using fast Otsu multithresholding method is presented, in which fast Otsu multithresholding method is used to calculate the optimum maximum and minimum hysteresis values and used as automatic thresholding for the fourth stage of the Canny algorithm.      The new adaptive Canny algorithm and the standard Canny algorithm (manual hysteresis value) was tested on standard image (Lena) and satellite image. The results approved the validity and accuracy of the new algorithm to find the images edges for personal and satellite images as pre-step for image segmentation.  
 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
FACE IDENTIFICATION USING BACK-PROPAGATION ADAPTIVE MULTIWAVENET
...Show More Authors

Face Identification is an important research topic in the field of computer vision and pattern recognition and has become a very active research area in recent decades. Recently multiwavelet-based neural networks (multiwavenets) have been used for function approximation and recognition, but to our best knowledge it has not been used for face Identification. This paper presents a novel approach for the Identification of human faces using Back-Propagation Adaptive Multiwavenet. The proposed multiwavenet has a structure similar to a multilayer perceptron (MLP) neural network with three layers, but the activation function of hidden layer is replaced with multiscaling functions. In experiments performed on the ORL face database it achieved a

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Face Identification Using Back-Propagation Adaptive Multiwavenet
...Show More Authors

Face Identification is an important research topic in the field of computer vision and pattern recognition and has become a very active research area in recent decades. Recently multiwavelet-based neural networks (multiwavenets) have been used for function approximation and recognition, but to our best knowledge it has not been used for face Identification. This paper presents a novel approach for the Identification of human faces using Back-Propagation Adaptive Multiwavenet. The proposed multiwavenet has a structure similar to a multilayer perceptron (MLP) neural network with three layers, but the activation function of hidden layer is replaced with multiscaling functions. In experiments performed on the ORL face database it achieved a

... Show More
View Publication Preview PDF
Publication Date
Thu Jan 20 2022
Journal Name
Webology
Hybrid Intrusion Detection System based on DNA Encoding, Teiresias Algorithm and Clustering Method
...Show More Authors

Until recently, researchers have utilized and applied various techniques for intrusion detection system (IDS), including DNA encoding and clustering that are widely used for this purpose. In addition to the other two major techniques for detection are anomaly and misuse detection, where anomaly detection is done based on user behavior, while misuse detection is done based on known attacks signatures. However, both techniques have some drawbacks, such as a high false alarm rate. Therefore, hybrid IDS takes advantage of combining the strength of both techniques to overcome their limitations. In this paper, a hybrid IDS is proposed based on the DNA encoding and clustering method. The proposed DNA encoding is done based on the UNSW-NB15

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Sun Jan 10 2016
Journal Name
British Journal Of Applied Science & Technology
Illumination - Invariant Facial Components Extraction Using Adaptive Contrast Enhancement Methods
...Show More Authors

The process of accurate localization of the basic components of human faces (i.e., eyebrows, eyes, nose, mouth, etc.) from images is an important step in face processing techniques like face tracking, facial expression recognition or face recognition. However, it is a challenging task due to the variations in scale, orientation, pose, facial expressions, partial occlusions and lighting conditions. In the current paper, a scheme includes the method of three-hierarchal stages for facial components extraction is presented; it works regardless of illumination variance. Adaptive linear contrast enhancement methods like gamma correction and contrast stretching are used to simulate the variance in light condition among images. As testing material

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Jan 18 2022
Journal Name
Iraqi Journal Of Science
Fast Text Analysis Using Symbol Enumeration and Hashing Methodology
...Show More Authors

This paper is focusing on reducing the time for text processing operations by taking the advantage of enumerating each string using the multi hashing methodology. Text analysis is an important subject for any system that deals with strings (sequences of characters from an alphabet) and text processing (e.g., word-processor, text editor and other text manipulation systems). Many problems have been arisen when dealing with string operations which consist of an unfixed number of characters (e.g., the execution time); this due to the overhead embedded-operations (like, symbols matching and conversion operations). The execution time largely depends on the string characteristics; especially its length (i.e., the number of characters consisting

... Show More
View Publication Preview PDF
Publication Date
Sat Nov 26 2022
Journal Name
Sensors
3D Object Recognition Using Fast Overlapped Block Processing Technique
...Show More Authors

Three-dimensional (3D) image and medical image processing, which are considered big data analysis, have attracted significant attention during the last few years. To this end, efficient 3D object recognition techniques could be beneficial to such image and medical image processing. However, to date, most of the proposed methods for 3D object recognition experience major challenges in terms of high computational complexity. This is attributed to the fact that the computational complexity and execution time are increased when the dimensions of the object are increased, which is the case in 3D object recognition. Therefore, finding an efficient method for obtaining high recognition accuracy with low computational complexity is essentia

... Show More
View Publication
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Wed May 06 2015
Journal Name
16th Conference In Natural Science And Mathematics
Efficient digital Image filtering method based on fuzzy algorithm
...Show More Authors

Recently, Image enhancement techniques can be represented as one of the most significant topics in the field of digital image processing. The basic problem in the enhancement method is how to remove noise or improve digital image details. In the current research a method for digital image de-noising and its detail sharpening/highlighted was proposed. The proposed approach uses fuzzy logic technique to process each pixel inside entire image, and then take the decision if it is noisy or need more processing for highlighting. This issue is performed by examining the degree of association with neighboring elements based on fuzzy algorithm. The proposed de-noising approach was evaluated by some standard images after corrupting them with impulse

... Show More
View Publication
Publication Date
Mon Jan 01 2024
Journal Name
Ieee Access
Dual-Layer Compressive Sensing Scheme Incorporating Adaptive Cross Approximation Algorithm for Solving Monostatic Electromagnetic Scattering Problems
...Show More Authors

View Publication
Scopus Clarivate Crossref
Publication Date
Tue Oct 19 2021
Journal Name
International Journal Of Online And Biomedical Engineering (ijoe)
Object Tracking Using Adaptive Diffusion Flow Active Model
...Show More Authors

Object tracking is one of the most important topics in the fields of image processing and computer vision. Object tracking is the process of finding interesting moving objects and following them from frame to frame. In this research, Active models–based object tracking algorithm is introduced. Active models are curves placed in an image domain and can evolve to segment the object of interest. Adaptive Diffusion Flow Active Model (ADFAM) is one the most famous types of Active Models. It overcomes the drawbacks of all previous versions of the Active Models specially the leakage problem, noise sensitivity, and long narrow hols or concavities. The ADFAM is well known for its very good capabilities in the segmentation process. In this

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Investigation of Shielding for Fast Neutrons Using Polymer Composites with Pb Reinforcement
...Show More Authors

    Manufacturing high-efficiency polymeric materials to moderate fast neutrons by converting them into slow or thermal neutrons. These materials absorb thermal neutrons as well as gamma rays associated with neutrons. Materials of small mass number are used to slow down fast neutrons because neutrons have a high cross-section when they interact with these materials. Materials of high mass number absorb gamma rays. Polyurethane and epoxy were mixed in various ratios to create a blend to serve as neutrons shield, lead (Pb) was then added to the blend at weight percentages of 20%, 30%, 40%, 50%, and 70% to produce a polymer composite.

    Polymeric materials reinforced with lead in various ratios were tested to select the best

... Show More
View Publication Preview PDF
Scopus Crossref