In this paper, we introduce new classes of sets called g *sD -sets , g *sD −α -sets , g *spreD − sets , g *sbD − -sets and g *sD −β -sets . Also, we study some of their properties and relations among them . Moreover, we use these sets to define and study some associative separation axioms .
In this paper we introduce new class of open sets called weak N-open sets and we study the relation between N-open sets , weak N-open sets and some other open sets. We prove several results about them.
The main idea of this research is to study fibrewise pairwise soft forms of the more important separation axioms of ordinary bitopology named fibrewise pairwise soft
Within that research, we introduce fibrewise fuzzy types of the most important separation axioms in ordinary fuzz topology, namely fibrewise fuzzy (T 0 spaces, T 1 spaces, R 0 spaces, Hausdorff spaces, functionally Hausdorff spaces, regular spaces, completely regular spaces, normal spaces, and normal spaces). Too we add numerous outcomes about it.
In this paper, we define a new type of pairwise separation axioms called pairwise semi-p- separation axioms in bitopological spaces, also we study some properties of these spaces and relationships of each one with the ordinary separation axioms in the bitopological spaces.
The aim of the present work is to define a new class of closed soft sets in soft closure spaces, namely, generalized closed soft sets (
The idea of ech fuzzy soft bi-closure space ( bicsp) is a new one, and its basic features are defined and studied in [1]. In this paper, separation axioms, namely pairwise, , pairwise semi-(respectively, pairwise pseudo and pairwise Uryshon) - fs bicsp's are introduced and studied in both ech fuzzy soft bi-closure space and their induced fuzzy soft bitopological spaces. It is shown that hereditary property is satisfied for , with respect to ech fuzzy soft bi-closure space but for other mentioned types of separations axioms, hereditary property satisfies for closed subspaces of ech fuzzy soft bi-closure space.