Extended calculations for sputtering yield through bombed Iron – target by ( H,D ,T ,He ) ions plasma are accomplished .The calculations include changing the input parameters : the energy of ( H,D ,T ,He ) ions plasma, the hit target angle of Iron, change atomic mass of incident ion. The program TRIM is used to accomplish these calculations. The results show that sputtering yield is directly dependent on these parameters. It can change the incident angle of ( H,D ,T ,He ) ions and energy lead to a significant change in sputtering yield on the other hand. The sputtering yields are highly affected by changing of incident ion mass at fixed other target parameters. It can be shown from calculation that whenever increased incident ion mass increase sputtering yield, increases with incident ions energy and then begins to decline, sputtering will not occur , at incident ion energies below the threshold energy . In this study we found that the sputtering yield depends on incidence angle, incident ions energy and atomic mass of target.
The present work is an attempt to develop design data for an Iraqi roof and wall constructions using the latest ASHRAE Radiant Time Series (RTS) cooling load calculation method. The work involves calculation of cooling load theoretically by introducing the design data for Iraq, and verifies the results experimentally by field measurements. Technical specifications of Iraqi construction materials are used to derive the conduction time factors that needed in RTS method calculations. Special software published by Oklahoma state university is used to extract the conduction factors according to the technical specifications of Iraqi construction materials. Good agreement between the average theoretical and measured cooli
... Show MoreOil well drilling fluid rheology, lubricity, swelling, and fluid loss control are all critical factors to take into account before beginning the hole's construction. Drilling fluids can be made smoother, more cost-effective, and more efficient by investigating and evaluating the effects of various nanoparticles including aluminum oxide (Al2O3) and iron oxide (Fe2O3) on their performance. A drilling fluid's performance can be assessed by comparing its baseline characteristics to those of nanoparticle (NPs) enhanced fluids. It was found that the drilling mud contained NPs in concentrations of 0,0.25, 0. 5, 0.75 and 1 g. According to the results, when drilling fluid was used without NPs, the coeff
... Show MoreIn this work, four electronic states ( , , and ) of some diatomic molecules (InF and InCl) was studied by TD-DFT with energy represented by the exchange-correlation energy. The SAOP/ATZP model was applied here to determine all parameters (re, Be, De, , , Te , and were determined to creation reliable values for electron spectroscopy. Also, another set of this calculation has been used represented by two theoretical models: ATZP and et-QZ3P-xD model. Therefore these theoretical models for ( and , and ) of the molecules have been compared with many values, theoretical and experimental values, and appear converge
... Show MoreOne of the main techniques to achieve phase behavior calculations of reservoir fluids is the equation of state. Soave - Redlich - Kwong equation of state can then be used to predict the phase behavior of the petroleum fluids by treating it as a multi-components system of pure and pseudo-components. The use of Soave – Redlich – Kwon equation of state is popular in the calculations of petroleum engineering therefore many researchers used it to perform phase behavior analysis for reservoir fluids (Wang and Orr (2000), Ertekin and Obut (2003), Hasan (2004) and Haghtalab (2011))
This paper presents a new flash model for reservoir fluids in gas – oil se
In line with the advancement of hardware technology and increasing consumer demands for new functionalities and innovations, software applications grew tremendously in term of size over the last decade. This sudden increase in size has a profound impact as far as testing is concerned. Here, more and more unwanted interactions among software systems components, hardware, and operating system are to be expected, rendering increased possibility of faults. To address this issue, many useful interaction-based testing techniques (termed t-way strategies) have been developed in the literature. As an effort to promote awareness and encourage its usage, this chapter surveys the current state-of-the-art and reviews the state-of-practices in t
... Show MoreIn line with the advancement of hardware technology and increasing consumer demands for new functionalities and innovations, software applications grew tremendously in term of size over the last decade. This sudden increase in size has a profound impact as far as testing is concerned. Here, more and more unwanted interactions among software systems components, hardware, and operating system are to be expected, rendering increased possibility of faults. To address this issue, many useful interaction-based testing techniques (termed t-way strategies) have been developed in the literature. As an effort to promote awareness and encourage its usage, this chapter surveys the current state-of-the-art and reviews the state-of-practices in t
... Show MoreA field experiment was conducted through 2010-2011 in the experimental field return to AlKut forest project near the Tigris river\ General Directorate of Horticultural and Forestry at Wasit governorate. The purpose of this research is to know the response of four cultivars of Sesame to Foliar nutrition with Boron. R.C.B.P. were used with split plot in four Replications including main plot cultivars, Ishtar, Babel, Al-Rafidain, local. While sub-plot included four concentrations of boron (0,50,100, 150) mgb/L-1. The result showed that Al-Rafidain was superior in the average of plant height and % of oil over all cultivars, while the local cultivars gave higher average of number of branches for plant and the highest first
... Show MoreIn this research, the efficiency of low-cost unmodified wool fibers were used to remove zinc ion from industrial wastewater. Removal of zinc ion was achieved at 99.52% by using simple wool column. The experiment was carried out under varying conditions of (2h) contact time, metal ion concentration (50mg/l), wool fibers quantity to treated water (70g/l), pH(7) & acid concentration (0.05M). The aim of this method is to use a high sensitive, available & cheep natural material which applied successfully for industrial wastewater& synthetic water, where zinc ion concentration was reduced from (14.6mg/l) to (0.07mg/l) & consequently the hazardous effect of contamination was minimized.