EDIRKTO, an Implicit Type Runge-Kutta Method of Diagonally Embedded pairs, is a novel approach presented in the paper that may be used to solve 4th-order ordinary differential equations of the form . There are two pairs of EDIRKTO, with three stages each: EDIRKTO4(3) and EDIRKTO5(4). The derivation techniques of the method indicate that the higher-order pair is more accurate, while the lower-order pair provides superior error estimates. Next, using these pairs as a basis, we developed variable step codes and applied them to a series of -order ODE problems. The numerical outcomes demonstrated how much more effective their approach is in reducing the quantity of function evaluations needed to resolve fourth-order ODE issues.
In this paper, we deal with games of fuzzy payoffs problem while there is uncertainty in data. We use the trapezoidal membership function to transform the data into fuzzy numbers and utilize the three different ranking function algorithms. Then we compare between these three ranking algorithms by using trapezoidal fuzzy numbers for the decision maker to get the best gains
The aim of this paper is to present method for solving ordinary differential equations of eighth order with two point boundary conditions. We propose two-point osculatory interpolation to construct polynomial solution.
in this paper sufficient conditions of oscillation of all of nonlinear second order neutral differential eqiation and sifficient conditions for nonoscillatory soloitions to onverage to zero are obtained
This paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient
Bacterial meningitis is a leading cause of illness and death worldwide. It is crucial for clinical and public health care, as well as disease control, to identify the meningitis-causing agent promptly. Between June 2021-February 2022, a total of 100 cerebrospinal fluid (CSF) and blood samples were collected from suspected cases of meningitis admitted to Raparin Paediatric Teaching Hospital, Erbil city-Iraq. Cytochemical, cultural, and biochemical tests were conducted, and confirmed by molecular techniques. Bacterial culture findings were positive in 7% of CSF samples and just one positive among blood samples. The most common pathogens found by cultural characteristics and VITEK 2 Compact System were Staphylococcus sciuri in two
... Show MoreClassification of imbalanced data is an important issue. Many algorithms have been developed for classification, such as Back Propagation (BP) neural networks, decision tree, Bayesian networks etc., and have been used repeatedly in many fields. These algorithms speak of the problem of imbalanced data, where there are situations that belong to more classes than others. Imbalanced data result in poor performance and bias to a class without other classes. In this paper, we proposed three techniques based on the Over-Sampling (O.S.) technique for processing imbalanced dataset and redistributing it and converting it into balanced dataset. These techniques are (Improved Synthetic Minority Over-Sampling Technique (Improved SMOTE), Border
... Show MoreIn this paper, estimation of system reliability of the multi-components in stress-strength model R(s,k) is considered, when the stress and strength are independent random variables and follows the Exponentiated Weibull Distribution (EWD) with known first shape parameter θ and, the second shape parameter α is unknown using different estimation methods. Comparisons among the proposed estimators through Monte Carlo simulation technique were made depend on mean squared error (MSE) criteria
The aim of this paper is prove a theorem on the Riesz mean of expansions with respect to Riesz bases, which extends the previous results of Loi and Tahir on the Schrodinger operator to the operator of 4-th order.
The aim of this paper is to prove a theorem on the Riesz means of expansions with respect to Riesz bases, which extends the previous results of [1] and [2] on the Schrödinger operator and the ordinary differential operator of 4-th order to the operator of order 2m by using the eigen functions of the ordinary differential operator. Some Symbols that used in the paper: the uniform norm. <,> the inner product in L2. G the set of all boundary elements of G. ˆ u the dual function of u.
Violence occurs as a daily human action all over the world; it may cause so many kinds of damage to individuals as well as to society: physical, psychological, or both. Many literary authors of different genres have tried their best to portray violence by showing its negative effects, especially playwrights because they have the chance to show people the dangers of violence through performance on stage to warn them against such negatively affected action. It has been a human action since the beginning of human life on this planet when the first crime happened on earth when Cane killed his brother Abel. In our modern world, people are witnessing daily violent actions as a result of destructive wars that turned the humans into brutal beings.
... Show More