EDIRKTO, an Implicit Type Runge-Kutta Method of Diagonally Embedded pairs, is a novel approach presented in the paper that may be used to solve 4th-order ordinary differential equations of the form . There are two pairs of EDIRKTO, with three stages each: EDIRKTO4(3) and EDIRKTO5(4). The derivation techniques of the method indicate that the higher-order pair is more accurate, while the lower-order pair provides superior error estimates. Next, using these pairs as a basis, we developed variable step codes and applied them to a series of -order ODE problems. The numerical outcomes demonstrated how much more effective their approach is in reducing the quantity of function evaluations needed to resolve fourth-order ODE issues.
The research tackled to solve Sudoku grid problem 9 ×9 , one of artificial intelligence problems. This problem has many of solutions in search space to generate Sudoku grid by using magic square of odd order as 3. This research concludes solution by proposed heuristic algorithm from magic square of odd order as 3 and no given numbers (from 1 to 9) in each cell of nine Sudoku grid cells in starting of problem solution, this is not similar the solution in old classic methods to generate all sub grids in Sudoku grid. The experimental results in this paper show the easily implementation to solve the problem to manage without manual method, additional to position of numbers (1, 2,..9) in center of each sub grid in Sudoku grid
... Show MoreSince the Internet has been more widely used and more people have access to multimedia content, copyright hacking, and piracy have risen. By the use of watermarking techniques, security, asset protection, and authentication have all been made possible. In this paper, a comparison between fragile and robust watermarking techniques has been presented to benefit them in recent studies to increase the level of security of critical media. A new technique has been suggested when adding an embedded value (129) to each pixel of the cover image and representing it as a key to thwart the attacker, increase security, rise imperceptibility, and make the system faster in detecting the tamper from unauthorized users. Using the two watermarking ty
... Show MoreIn this work we prepared some schiff bases by condensation urea and benzaldehyde or its derevative ( bromo benzaldehyde or hydroxy benzaldehyde ) as ( 1 : 1 ) mole ( urea : benzaldehyde or its substitution ) to prepare compounds ( A1 , B1 , C1 , D1 , E1 , F1 , G1 ) and ( 1 : 2 ) mole ( urea : benzaldehyde or its substitution ) to prepare compounds ( A2 , B2 , C2 , D2 , E1 , F2 , G2 ) . The prepared compounds identified spectroscopic by infrared spectroscopy FT-IR and Thin layer chromotography T.L.C . The force constant calculated from the wave number for the carbonyl stretching from FT-IR chart and by using the following equation K = 4?2C2?'2? The change in double bond order for carbonyl deteremined in according with some past re
... Show MoreFor the design of a deep foundation, piles are presumed to transfer the axial and lateral loads into the ground. However, the effects of the combined loads are generally ignored in engineering practice since there are uncertainties to the precise definition of soil–pile interactions. Hence, for technical discussions of the soil–pile interactions due to dynamic loads, a three-dimensional finite element model was developed to evaluate the soil pile performance based on the 1 g shaking table test. The static loads consisted of 50% of the allowable vertical pile capacity and 50% of the allowable lateral pile capacity. The dynamic loads were taken from the recorded data of the Kobe e
The paper is devoted to solve nth order linear delay integro-differential equations of convolution type (DIDE's-CT) using collocation method with the aid of B-spline functions. A new algorithm with the aid of Matlab language is derived to treat numerically three types (retarded, neutral and mixed) of nth order linear DIDE's-CT using B-spline functions and Weddle rule for calculating the required integrals for these equations. Comparison between approximated and exact results has been given in test examples with suitable graphing for every example for solving three types of linear DIDE's-CT of different orders for conciliated the accuracy of the results of the proposed method.
A taxonomic keys was established of book and bark lice Order Psocoptera to isolated insects in Iraq from different localities of Baghdad and Babylon provinces. Thirteen species belong to eight genera and five families have been studied and described in details, these species were recorded for the first time in Iraq. These species are: Belaphopsocus badonneli New, 1971; Belaphotroctes oculeris Bodonnel, 1973; Embodopsocosis newi Bodonnel, 1973; Epipsocus stigamaticus Mockeord, 1991; Lepinotus huoni Schmidt and New, 2008; Liposcelies decolor Peramane 1925 Liposcelies paeta Pearman 1942 Liposclies bostrychphila Badonnel 1931; Liposclies brunnea Mostchulsky 1852; Liposclies entoophila Enderlein 1907; Neopsocopsis minuscule Li 2002 ;
... Show MoreThis paper is illustrates the sufficient conditions of the uniformly asymptotically stable and the bounded of the zero solution of fifth order nonlinear differential equation with a variable delay τ(t)
بهذا البحث نقارن معاييرالمعلومات التقليدية (AIC , SIC, HQ , FPE ) مع معيارمعلومات الانحراف المحور (MDIC) المستعملة لتحديد رتبة انموذج الانحدارالذاتي (AR) للعملية التي تولد البيانات,باستعمال المحاكاة وذلك بتوليد بيانات من عدة نماذج للأنحدارالذاتي,عندما خضوع حد الخطأ للتوزيع الطبيعي بقيم مختلفة لمعلماته
... Show MorePlane cubics curves may be classified up to isomorphism or projective equivalence. In this paper, the inequivalent elliptic cubic curves which are non-singular plane cubic curves have been classified projectively over the finite field of order nineteen, and determined if they are complete or incomplete as arcs of degree three. Also, the maximum size of a complete elliptic curve that can be constructed from each incomplete elliptic curve are given.
The nonlinear refractive (NLR) index and third order susceptibility (X3) of carbon quantum dots (CQDs) have been studied using two laser wavelengths (473 and 532 nm). The z-scan technique was used to examine the nonlinearity. Results showed that all concentrations have negative NLR indices in the order of 10−10 cm2/W at two laser wavelengths. Moreover, the nonlinearity of CQDs was improved by increasing the concentration of CQDs. The highest value of third order susceptibility was found to be 3.32*10−8 (esu) for CQDs with a concentration of 70 mA at 473 nm wavelength.