An experiment was conducted in the green garden of Department of Biology/ in College of Education for Pure Sciences Ibn-Al-Haitham/ Baghdad University for the grouth season (2012-2013) to study the effect of three concentrations of gibberellic acid (0, 50, 100) ppm and three concentrations of proline (0, 25, 50) ppm on micronutrients content (Iron (Fe), Zinc (Zn), Manganese (Mn) and Copper (Cu) ppm) in addition to total chlorophyll content (µg. cm-2) for the green part of peas plant (Pisum sativum), pots of (8 kg) soil were used, the experiment was conducted according to complete randomized design (CRD) and three replicates, whereby the experiment included (27) pots, the significant variations were compared between means using least significant difference- LSD test. The results have represented that the concentrations (100) ppm of gibberellic acid and (50) ppm of proline led to significant increase of iron and copper contents and total chlorophyll content, whereas the concentrations (50) ppm of gibberellic acid and (50) ppm of proline led to the higher significant contents of zinc and manganese .
A numerical investigation was performed for the radiative magnetohydrodynamic (MHD) viscous nanofluid due to convective stretching sheet. Heat and mass transfer were investigated in terms of viscous dissipations, thermal radiation and chemical reaction. The governing Partial Differential Equations (PDEs) were transformed into an arrangement of non-linear Ordinary Differential Equations (ODEs) by using the similarity transformation. The resulting system of ODEs is solved numerically by using shooting method along with Adams-Moulton Method of order four with the help of the computational software FORTAN. Furthermore, we compared our results with the existing results for especial cases. which are in an excellent agreement. The
numerical
In this paper, an inexpensive, simple and well-accurate process of the generation of bimetallic silver Ag//gold Au core//shell is colloidal metal nanoparticles (MNPs). This is achieved via an atmospheric pressure non-thermal plasma glow discharge between two electrodes. One of these electrodes is a capillary tube placing over solution about (1 cm) that acts as the cathode, while the other electrode is a metal disk immersed in the solution and acts as an anode. Glow discharge process carried out at room temperature using a home-made cell with (6 KV) applied voltage and direct current (DC) about (1.8 mA) for different discharge periods. A wide range of bimetallic Ag//Au colloidal MNPs was rapidly synthesized as a result of non-thermal plas
... Show MoreConcrete columns with hollow-core sections find widespread application owing to their excellent structural efficiency and efficient material utilization. However, corrosion poses a challenge in concrete buildings with steel reinforcement. This paper explores the possibility of using glass fiber-reinforced polymer (GFRP) reinforcement as a non-corrosive and economically viable substitute for steel reinforcement in short square hollow concrete columns. Twelve hollow short columns were meticulously prepared in the laboratory experiments and subjected to pure axial compressive loads until failure. All columns featured a hollow square section with exterior dimensions of (180 × 180) mm and 900 mm height. The columns were categorized into
... Show MoreCoronavirus disease (Covid-19) has threatened human life, so it has become necessary to study this disease from many aspects. This study aims to identify the nature of the effect of interdependence between these countries and the impact of each other on each other by designating these countries as heads for the proposed graph and measuring the distance between them using the ultrametric spanning tree. In this paper, a network of countries in the Middle East is described using the tools of graph theory.
The main objective of this study is to develop a rate of penetration (ROP) model for Khasib formation in Ahdab oil field and determine the drilling parameters controlling the prediction of ROP values by using artificial neural network (ANN).
An Interactive Petrophysical software was used to convert the raw dataset of transit time (LAS Readings) from parts of meter-to-meter reading with depth. The IBM SPSS statistics software version 22 was used to create an interconnection between the drilling variables and the rate of penetration, detection of outliers of input parameters, and regression modeling. While a JMP Version 11 software from SAS Institute Inc. was used for artificial neural modeling.
&nb
... Show MoreSpectrophotometric method was developed for the determination of copper(II) ion. Synthesized (2,2[O-Tolidine-4,4-bis azo]bis[4,5-diphenyl imidazole]) (MBBAI) was used as chromogenic reagent at pH=5. Various factors affecting complex formation, such as, pH effect, reagent concentration, time effect and temperature effect, have been considered and studied. Under optimum conditions concentration ranged from (5.00-80.00) µg/mL of copper(II) obeyed Beer`s Low. Maximum absorption of the complex was 409nm with molar absorpitivity 0.127x104 L mol-1 cm-1. Limit of detection(LOD) and Limit of quantification were 1.924 and 6.42 μg/mL, respectively.
... Show MoreGas-lift technique plays an important role in sustaining oil production, especially from a mature field when the reservoirs’ natural energy becomes insufficient. However, optimally allocation of the gas injection rate in a large field through its gas-lift network system towards maximization of oil production rate is a challenging task. The conventional gas-lift optimization problems may become inefficient and incapable of modelling the gas-lift optimization in a large network system with problems associated with multi-objective, multi-constrained, and limited gas injection rate. The key objective of this study is to assess the feasibility of utilizing the Genetic Algorithm (GA) technique to optimize t
Because of their Physico‐chemical characteristics and its composition, the development of new specific analytical methodologies to determine some highly polar pesticides are required. The reported methods demand long analysis time, expensive instruments and prior extraction of pesticide for detection. The current work presents a new flow injection analysis method combined with indirect photometric detection for the determination of Fosetyl‐Aluminum (Fosetyl‐Al) in commercial formulations, with rapid and highly accurate determination involving only construction of manifold system combined with photometric detector without need some of the pre‐treatments to the sample before the analysis such a