Preferred Language
Articles
/
ijs-1503
An Artificial Neural Network for Predicting Rate of Penetration in AL- Khasib Formation – Ahdeb Oil Field
...Show More Authors

The main objective of this study is to develop a rate of penetration (ROP) model for Khasib formation in Ahdab oil field and determine the drilling parameters controlling the prediction of ROP values by using artificial neural network (ANN).

     An Interactive Petrophysical software was used to convert the raw dataset of transit time (LAS Readings) from parts of meter-to-meter reading with depth. The IBM SPSS statistics software version 22 was used to create an interconnection between the drilling variables and the rate of penetration, detection of outliers of input parameters, and regression modeling. While a JMP Version 11 software from SAS Institute Inc. was used for artificial neural modeling.

     The proposed artificial neural network method depends on obtaining the input data from drilling mud logging data and wireline logging data. The data then analyzes it to create an interconnection between the drilling variables and the rate of penetration.

     The proposed ANN model consists of an input layer, hidden layer and outputs layer, while it applies the tangent function (TanH) as a learning and training algorithm in the hidden layer. Finally, the predicted values of ROP are compared with the measured values. The proposed ANN model is more efficient than the multiple regression analysis in predicting ROP. The obtained coefficient of determination (R2) values using the ANN technique are 0.93 and 0.91 for training and validation sets, respectively. This study presents a new model for predicting ROP values in comparison with other conventional drilling measurements.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Dec 30 2018
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of penetration Rate and cost with Artificial Neural Network for Alhafaya Oil Field
...Show More Authors

Prediction of penetration rate (ROP) is important process in optimization of drilling due to its crucial role in lowering drilling operation costs. This process has complex nature due to too many interrelated factors that affected the rate of penetration, which make difficult predicting process. This paper shows a new technique of rate of penetration prediction by using artificial neural network technique. A three layers model composed of two hidden layers and output layer has built by using drilling parameters data extracted from mud logging and wire line log for Alhalfaya oil field. These drilling parameters includes mechanical (WOB, RPM), hydraulic (HIS), and travel transit time (DT). Five data set represented five formations gathered

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Tue Jun 30 2020
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Using Artificial Neural Network to Predict Rate of Penetration from Dynamic Elastic Properties in Nasiriya Oil Field
...Show More Authors

   The time spent in drilling ahead is usually a significant portion of total well cost. Drilling is an expensive operation including the cost of equipment and material used during the penetration of rock plus crew efforts in order to finish the well without serious problems. Knowing the rate of penetration should help in speculation of the cost and lead to optimize drilling outgoings. Ten wells in the Nasiriya oil field have been selected based on the availability of the data. Dynamic elastic properties of Mishrif formation in the selected wells were determined by using Interactive Petrophysics (IP V3.5) software based on the las files and log record provided. The average rate of penetration and average dynamic elastic propert

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Aip Conference Proceedings
Artificial neural network model for predicting the desulfurization efficiency of Al-Ahdab crude oil
...Show More Authors

View Publication Preview PDF
Scopus (7)
Crossref (6)
Scopus Crossref
Publication Date
Thu Mar 31 2022
Journal Name
Iraqi Geological Journal
Development of Artificial Intelligence Models for Estimating Rate of Penetration in East Baghdad Field, Middle Iraq
...Show More Authors

It is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy i

... Show More
Crossref
Publication Date
Wed Sep 30 2015
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Correlation of Penetration Rate with Drilling Parameters For an Iraqi Field Using Mud Logging Data
...Show More Authors

This paper provides an attempt for modeling rate of penetration (ROP) for an Iraqi oil field with aid of mud logging data. Data of Umm Radhuma formation was selected for this modeling. These data include weight on bit, rotary speed, flow rate and mud density. A statistical approach was applied on these data for improving rate of penetration modeling. As result, an empirical linear ROP model has been developed with good fitness when compared with actual data. Also, a nonlinear regression analysis of different forms was attempted, and the results showed that the power model has good predicting capability with respect to other forms.

View Publication Preview PDF
Publication Date
Tue Dec 31 2024
Journal Name
Iraqi Geological Journal
Geomechanical Modeling and Artificial Neural Network Technique for Predicting Breakout Failure in Nasiriyah Oilfield
...Show More Authors

Wellbore instability is one of the major issues observed throughout the drilling operation. Various wellbore instability issues may occur during drilling operations, including tight holes, borehole collapse, stuck pipe, and shale caving. Rock failure criteria are important in geomechanical analysis since they predict shear and tensile failures. A suitable failure criterion must match the rock failure, which a caliper log can detect to estimate the optimal mud weight. Lack of data makes certain wells' caliper logs unavailable. This makes it difficult to validate the performance of each failure criterion. This paper proposes an approach for predicting the breakout zones in the Nasiriyah oil field using an artificial neural network. It

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
Reservoir Characteristics for Khasib Formation in selected wells of East Baghdad Oil field, Iraq
...Show More Authors

     Four subsurface sections and electrical, porosity logs, and gamma-ray logs of the Khasib Formation (age Late Turonian-Lower Coniacian) were studied to identify reservoir characteristics and to evaluate the reservoir properties of the Khasib reservoir units in the East Baghdad oilfield. The lithology of the formation is limestone throughout the whole sequence in all studied wells EB-83, EB-87, EB-92, and EB94. It is bounded conformably from the top by Tanuma Formation and has a conformable lower contact with Kifl Formation. The lower and upper boundaries of the formation were determined using well log analysis, and the formation was divided into three main rock units (Kh1, Kh2, and Kh3), depending on the porosity logs. The porosi

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Oct 18 2022
Journal Name
University Of Baghdad
Experimental Study and Analysis of Matrix Acidizing for Mishrif Formation-Ahdeb Oil Field
...Show More Authors

Carbonate matrix stimulation technology has progressed tremendously in the last decade through creative laboratory research and novel fluid advancements. Still, existing methods for optimizing the stimulation of wells in vast carbonate reservoirs are inadequate. Consequently, oil and gas wells are stimulated routinely to expand production and maximize recovery. Matrix acidizing is extensively used because of its low cost and ability to restore the original productivity of damaged wells and provide additional production capacity. The Ahdeb oil field lacks studies in matrix acidizing; therefore, this work provided new information on limestone acidizing in the Mishrif reservoir. Moreover, several reports have been issued on the difficulties en

... Show More
Publication Date
Thu Sep 01 2016
Journal Name
Journal Of Engineering
Application of Artificial Neural Network for Predicting Iron Concentration in the Location of Al-Wahda Water Treatment Plant in Baghdad City
...Show More Authors

Iron is one of the abundant elements on earth that is an essential element for humans and may be a troublesome element in water supplies.  In this research an AAN model was developed to predict iron concentrations in the location of Al- Wahda water treatment plant in Baghdad city by water quality assessment of iron concentrations at seven WTPs up stream Tigris River. SPSS software was used to build the ANN model. The input data were iron concentrations in the raw water for the period 2004-2011. The results indicated the best model predicted Iron concentrations at Al-Wahda WTP with a coefficient of determination 0.9142. The model used one hidden layer with two nodes and the testing error was 0.834. The ANN model coul

... Show More
View Publication Preview PDF
Publication Date
Wed Dec 30 2020
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Petrophysical Properties of Khasib Formation in East Baghdad Oil Field Southern Area
...Show More Authors

Petrophysical properties evaluation from well log analysis has always been crucial for the identification and assessment of hydrocarbon bearing zones. East Baghdad field is located 10 km east of Baghdad city, where the southern area includes the two southern portions of the field, Khasib formation is the main reservoir of East Baghdad oil field.

In this paper, well log data of nine wells have been environmentally corrected, where the corrected data used to determine lithology, shale volume, porosity, and water saturation. Lithology identified by two methods; neutron-density and M-N matrix plots, while the shale volume estimated by single shale indicator and dual shale indicator, The porosity is calculated from the three common po

... Show More
View Publication Preview PDF
Crossref