Coronavirus disease (Covid-19) has threatened human life, so it has become necessary to study this disease from many aspects. This study aims to identify the nature of the effect of interdependence between these countries and the impact of each other on each other by designating these countries as heads for the proposed graph and measuring the distance between them using the ultrametric spanning tree. In this paper, a network of countries in the Middle East is described using the tools of graph theory.
tock markets changed up and down during time. Some companies’ affect others due to dependency on each other . In this work, the network model of the stock market is discribed as a complete weighted graph. This paper aims to investigate the Iraqi stock markets using graph theory tools. The vertices of this graph correspond to the Iraqi markets companies, and the weights of the edges are set ulrametric distance of minimum spanning tree.
This paper proposes a new method Object Detection in Skin Cancer Image, the minimum
spanning tree Detection descriptor (MST). This ObjectDetection descriptor builds on the
structure of the minimum spanning tree constructed on the targettraining set of Skin Cancer
Images only. The Skin Cancer Image Detection of test objects relies on their distances to the
closest edge of thattree. Our experimentsshow that the Minimum Spanning Tree (MST) performs
especially well in case of Fogginessimage problems and in highNoisespaces for Skin Cancer
Image.
The proposed method of Object Detection Skin Cancer Image wasimplemented and tested on
different Skin Cancer Images. We obtained very good results . The experiment showed that
To assess the impact of COVID‐19 on oral hygiene (OH) awareness, attitude towards dental treatment, fear of infection and economic impact in the Middle East.
This survey was performed by online distribution of questionnaires in three countries in the Middle East (Jordan, Iraq and Egypt). The questionnaire consisted of five sections: the first section was aimed at collecting demographic data and the rest sections used to assess OH awareness, attitude towards dental treatment, degree of fear and economic impact of COVID‐19. The answers were either multiple choice, closed‐end (Yes or N
Receipt date:12/7/2020 accepted date:24/1/2021 Publication date:31/12/2021
This work is licensed under a Creative Commons Attribution 4.0 International License.
The constant characteristic of international relations is the constant change due to political, economic and military developments in addition to technology, and this in turn has led to many transformations in the concept of power, its uses, and the elements that form power and its distribution, and according to those variables, the concept of power has shifted from hard to soft, up to smart powe
... Show MoreCoronavirus 2019 (COVID-19) pandemic led to a massive global socio-economic tragedy that has impacted the ecosystem. This paper aims to contextualize urban and rural environmental situations during the COVID-19 pandemic in the Middle East and North Africa (MENA) Region.
An online survey was conducted, 6770 participants were included in the final analysis, and 64% were females. The majority of the participants were urban citizens (74%). Over 50% of the urban residents significantly (
Malaysia is linked to the countries of the Middle East by a historical relationship identified by a number of factors and determinants that affected the developments of that relationship, especially its relentless endeavor to preserve its Islamic identity with the leadership of the rest of the other ethnicities, in addition to those factors and international determinants that directly affected the typicality of this relationship and perhaps the United States stands At the forefront of who represents this international variable, as it is considered the Middle East region as a core region and within its vital field, and therefore any analog relationship in the field of international relations and one of its parties is the countries of the
... Show MoreWith its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques. T
... Show More