Suppose that A be an abelain ring with identity, B be a unitary (left) A-module, in this paper ,we introduce a type of modules ,namely Quasi-semiprime A-module, whenever is a Prime Ideal For proper submodule N of B,then B is called Quasi-semiprime module ,which is a Generalization of Quasi-Prime A-module,whenever annAN is a prime ideal for proper submodule N of B,then B is Quasi-prime module .A comprchensive study of these modules is given,and we study the Relationship between quasi-semiprime module and quasi-prime .We put the codition coprime over cosemiprime ring for the two cocept quasi-prime module and quasi-semiprime module are equavelant.and the cocept of prime module and quasi-semiprime module are equavelant.The codition of anti-hopfain make Quasi-Prime is Quasi-Semiprime A-module.Whenever B is Cyclic,Coprime C-Module,Where C be ring each ideal is semiprim,imlies Quasi-Prime,Quasi-SimePrime and annCB is Prime ideal are equaivelant.If F be eipemorphism from B1 B2 ,Whenever B1 is Quasi-SemiPrime Module,implies B2 is Quasi-semiprime A-Module and the iverse Image Of Quasi-Semiprime Is Quasi-SemiPrime A-Module.
Let R be a commutative ring with identity and M be unitary (left) R-module. The principal aim of this paper is to study the relationships between relatively cancellation module and multiplication modules, pure submodules and Noetherian (Artinian) modules.
Let R be a commutative ring with unity and M be a non zero unitary left R-module. M is called a hollow module if every proper submodule N of M is small (N ≪ M), i.e. N + W ≠M for every proper submodule W in M. A δ-hollow module is a generalization of hollow module, where an R-module M is called δ-hollow module if every proper submodule N of M is δ-small (N δ  M), i.e. N + W ≠M for every proper submodule W in M with M W is singular. In this work we study this class of modules and give several fundamental properties related with this concept
The concept of a small f- subm was presented in a previous study. This work introduced a concept of a hollow f- module, where a module is said to be hollow fuzzy when every subm of it is a small f- subm. Some new types of hollow modules are provided namely, Loc- hollow f- modules as a strength of the hollow module, where every Loc- hollow f- module is a hollow module, but the converse is not true. Many properties and characterizations of these concepts are proved, also the relationship between all these types is researched. Many important results that explain this relationship are demonstrated also several characterizations and properties related to these concepts are given.
Let be a commutative ring with identity, and be a unitary left R-module. In this paper we, introduce and study a new class of modules called pure hollow (Pr-hollow) and pure-lifting (Pr-lifting). We give a fundamental, properties of these concept. also, we, introduce some conditions under which the quotient and direct sum of Pr-lifting modules is Pr-lifting.
Let R be a commutative ring with non-zero identity element. For two fixed positive integers m and n. A right R-module M is called fully (m,n) -stable relative to ideal A of , if for each n-generated submodule of Mm and R-homomorphism . In this paper we give some characterization theorems and properties of fully (m,n) -stable modules relative to an ideal A of . which generalize the results of fully stable modules relative to an ideal A of R.
The main goal of this paper is to dualize the two concepts St-closed submodule and semi-extending module which were given by Ahmed and Abbas in 2015. These dualizations are called CSt-closed submodule and cosemi-extending mod- ule. Many important properties of these dualizations are investigated, as well as some others useful results which mentioned by those authors are dualized. Furthermore, the relationships of cosemi-extending and other related modules are considered.
In this paper, we give a comprehensive study of min (max)-CS modules such as a closed submodule of min-CS module is min-CS. Amongst other results we show that a direct summand of min (max)-CS module is min (max)-CS module. One of interested theorems in this paper is, if R is a nonsingular ring then R is a max-CS ring if and only if R is a min-CS ring.
An -module is extending if every submodule of is essential in a direct summand of . Following Clark, an -module is purely extending if every submodule of is essential in a pure submodule of . It is clear purely extending is generalization of extending modules. Following Birkenmeier and Tercan, an -module is Goldie extending if, for each submodule of , there is a direct summand D of such that . In this paper, we introduce and study class of modules which are proper generalization of both the purely extending modules and -extending modules. We call an -module is purely Goldie extending if, for each , there is a pure submodule P of such that . Many c
... Show MoreLet R be an associative ring with identity and M a non – zero unitary R-module.In this paper we introduce the definition of purely co-Hopfian module, where an R-module M is said to be purely co-Hopfian if for any monomorphism f ˛ End (M), Imf is pure in M and we give some properties of this kind of modules.