Preferred Language
Articles
/
jih-316
Efficient Semi-Analytic Technique for Solving Nonlinear Singular Initial Value Problems
...Show More Authors

 The aim of this paper is to present a semi - analytic technique for solving singular initial value problems of ordinary differential equations with a singularity of different kinds to construct polynomial solution using two point  osculatory  interpolation.           The efficiency and accuracy of suggested method is assessed by comparisons with exact and other approximate solutions for a wide classes of non–homogeneous, non–linear singular initial value problems.             A new, efficient estimate of the global error is used for adaptive mesh selection. Also, analyze some of the numerical aspects relevant for the implementation, describe measures to increase the efficiency of the code and compare its performance with the performance of established standard codes for singular initial value problems.           Many examples are presented to demonstrate the applicability and efficiency of the suggested method on one hand and to confirm the convergence order on the other hand.  

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Sep 06 2015
Journal Name
Baghdad Science Journal
A New Three Step Iterative Method without Second Derivative for Solving Nonlinear Equations
...Show More Authors

In this paper , an efficient new procedure is proposed to modify third –order iterative method obtained by Rostom and Fuad [Saeed. R. K. and Khthr. F.W. New third –order iterative method for solving nonlinear equations. J. Appl. Sci .7(2011): 916-921] , using three steps based on Newton equation , finite difference method and linear interpolation. Analysis of convergence is given to show the efficiency and the performance of the new method for solving nonlinear equations. The efficiency of the new method is demonstrated by numerical examples.

View Publication Preview PDF
Crossref
Publication Date
Mon Sep 03 2018
Journal Name
Al-academy
The Technical Treatment for Pottery Body by (Kintsugi) Technique in Japanese Pottery – Analytic Study
...Show More Authors

The aesthetic and technical expertise help  in producing the artistic work and achieving results in aesthetic formulations that reflect the aesthetic and  expressive dimensions and the reflective dimensions of the pottery, surpassing its traditions, asserting  its active presence in life, cherishing it  even when it  breaks  or get damaged   by employing techniques that are originated  from  the Japanese environment.

                       The research problem is to study how ( Kintsugi) technique and similar techniques are used to create  new rebirths of pottery piec

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
On semi strongly (E, F)-convex functions and semi strongly (E, F)-convex optimization problems
...Show More Authors
Abstract<p>In this paper, a new class of non-convex functions called semi strongly (<italic>E, F</italic>)-convex functions are presented. This class represents a natural extension of semi strongly <italic>E</italic>-convex functions shown in the literature. Different properties of this class of functions are discussed. Optimality properties of constrained optimization problems in which the objective function or the inequality constraints functions are semi strongly (<italic>E, F</italic>)-convex are proved for this class.</p>
View Publication
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Fri Jan 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Using a New General Complex Integral Transform for Solving Population Growth and Decay Problems
...Show More Authors

The Population growth and decay issues are one of the most pressing issues in many sectors of study. These issues can be found in physics, chemistry, social science, biology, and zoology, among other subjects.

We introduced the solution for these problems in this paper by using the SEJI (Sadiq- Emad- Jinan) integral transform, which has some mathematical properties that we use in our solutions. We also presented the SEJI transform for some functions, followed by the inverse of the SEJI integral transform for these functions. After that, we demonstrate how to use the SEJI transform to tackle population growth and decay problems by presenting two applications that demonstrate how to use this transform to obtain solutions.

Fin

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Communications In Mathematical Biology And Neuroscience
A reliable numerical simulation technique for solving COVID-19 model
...Show More Authors

View Publication
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Sun Mar 04 2018
Journal Name
Baghdad Science Journal
Solving Fuzzy Games Problems by Using Ranking Functions
...Show More Authors

In this paper, we deal with games of fuzzy payoffs problem while there is uncertainty in data. We use the trapezoidal membership function to transform the data into fuzzy numbers and utilize the three different ranking function algorithms. Then we compare between these three ranking algorithms by using trapezoidal fuzzy numbers for the decision maker to get the best gains

View Publication Preview PDF
Scopus (6)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Wed May 13 2020
Journal Name
Nonlinear Engineering
Two meshless methods for solving nonlinear ordinary differential equations in engineering and applied sciences
...Show More Authors
Abstract<p>In this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using <italic>Mathematica</italic>® 10. Four applications, which are the well-known nonlinear problems: the magnetohydrodynamic squeezing fluid, the Jeffery-Hamel flow, the straight fin problem and the Falkner-Skan equation are presented and solved using the proposed methods. To ill</p> ... Show More
View Publication
Crossref (10)
Crossref
Publication Date
Wed May 13 2020
Journal Name
Nonlinear Engineering
Two meshless methods for solving nonlinear ordinary differential equations in engineering and applied sciences
...Show More Authors
Abstract<p>In this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using <italic>Mathematica</italic>® 10. Four applications, which are the well-known nonlinear problems: the magnetohydrodynamic squeezing fluid, the Jeffery-Hamel flow, the straight fin problem and the Falkner-Skan equation are presented and solved using the proposed methods. To ill</p> ... Show More
Scopus (15)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2014
Journal Name
Lap Lambert Academic Publishing
High Order Tow Point Boundary Value Problems And Its Applications
...Show More Authors

The aim of this book is to present a method for solving high order ordinary differential equations with two point boundary condition of the different kind, we propose semi-analytic technique using two-point osculatory interpolation to construct polynomial solution. The original problem is concerned using two-points osculatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] . Also, we discussion the existence and uniqueness of solutions and many examples are presented to demonstrate the applicability, accuracy and efficiency of the methods by compared with conventional method .i.e. VIDM , Septic B-Spline , , NIM , HPM, Haar wavelets on one hand and to confirm the order convergence on the other

... Show More
View Publication
Publication Date
Mon Apr 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solving Linear Boundary Value Problem Using Shooting Continuous Explicit Runge-Kutta Method
...Show More Authors

  In this paper we shall generalize fifth explicit Runge-Kutta Feldberg(ERKF(5)) and Continuous explicit Runge-Kutta (CERK) method using shooting method to solve second order boundary value problem  which can be reduced to order one.These methods we shall call them as shooting Continuous Explicit Runge-Kutta method, the results are computed using matlab program.

View Publication Preview PDF