"Watermarking" is one method in which digital information is buried in a carrier signal;
the hidden information should be related to the carrier signal. There are many different types of
digital watermarking, including traditional watermarking that uses visible media (such as snaps,
images, or video), and a signal may be carrying many watermarks. Any signal that can tolerate
noise, such as audio, video, or picture data, can have a digital watermark implanted in it. A digital
watermark must be able to withstand changes that can be made to the carrier signal in order to
protect copyright information in media files. The goal of digital watermarking is to ensure the
integrity of data, whereas steganography focuses on making information undetectable to humans.
Watermarking doesn't alter the original digital image, unlike public-key encryption, but rather
creates a new one with embedded secured aspects for integrity. There are no residual effects of
encryption on decrypted documents. This work focuses on strong digital image watermarking
algorithms for copyright protection purposes. Watermarks of various sorts and uses were
discussed, as well as a review of current watermarking techniques and assaults. The project shows
how to watermark an image in the frequency domain using DCT and DWT, as well as in the spatial
domain using the LSB approach. When it comes to noise and compression, frequency-domain
approaches are far more resilient than LSB. All of these scenarios necessitate the use of the original
picture to remove the watermark. Out of the three, the DWT approach has provided the best results.
We can improve the resilience of our watermark while having little to no extra influence on image
quality by embedding watermarks in these places.
Optical Character Recognition (OCR) research includes computer vision, artificial intelligence, and pattern recognition. Character recognition has garnered a lot of attention in the last decade due to its broad variety of uses and applications, including multiple-choice test data, business documents (e.g., ID cards, bank notes, passports, etc.), and automatic number plate recognition. This paper introduces an automatic recognition system for printed numerals. The automatic reading system is based on extracting local statistical and geometrical features from the text image. Those features are represented by eight vectors extracted from each digit. Two of these features are local statistical (A, A th), and six are local
... Show More<p class="0abstract">Image denoising is a technique for removing unwanted signals called the noise, which coupling with the original signal when transmitting them; to remove the noise from the original signal, many denoising methods are used. In this paper, the Multiwavelet Transform (MWT) is used to denoise the corrupted image by Choosing the HH coefficient for processing based on two different filters Tri-State Median filter and Switching Median filter. With each filter, various rules are used, such as Normal Shrink, Sure Shrink, Visu Shrink, and Bivariate Shrink. The proposed algorithm is applied Salt& pepper noise with different levels for grayscale test images. The quality of the denoised image is evaluated by usi
... Show MoreIn this research , Aprocess ( LICVD) was used for producing silicon nitride powders with chemical compositon Si3N4 ,by using TEA-Co2 Laser to induc reaction in the gas phase, NH3 was used as on additive to SiH4. Reactant gases that were vibrationaly heated by absorbing energy emitted from TEA-Co2 Laser decomposes throug coillsion assisted multiple photon dissociation causing Si3N4 powders. By the dependence of the LICVD process on varios parameters such as Laser intensity , total gas pressure, partial pressures of SiH4 and NH3 were investigated. Dissociation rate as a function of Laser intensity and pressure was investigated. The powders obtained exhibit various colors from brown which is rich in Si to white.This
... Show MoreThis paper presents a hybrid approach for solving null values problem; it hybridizes rough set theory with intelligent swarm algorithm. The proposed approach is a supervised learning model. A large set of complete data called learning data is used to find the decision rule sets that then have been used in solving the incomplete data problem. The intelligent swarm algorithm is used for feature selection which represents bees algorithm as heuristic search algorithm combined with rough set theory as evaluation function. Also another feature selection algorithm called ID3 is presented, it works as statistical algorithm instead of intelligent algorithm. A comparison between those two approaches is made in their performance for null values estima
... Show MoreThis search has introduced the techniques of multi-wavelet transform and neural network for recognition 3-D object from 2-D image using patches. The proposed techniques were tested on database of different patches features and the high energy subband of discrete multi-wavelet transform DMWT (gp) of the patches. The test set has two groups, group (1) which contains images, their (gp) patches and patches features of the same images as a part of that in the data set beside other images, (gp) patches and features, and group (2) which contains the (gp) patches and patches features the same as a part of that in the database but after modification such as rotation, scaling and translation. Recognition by back propagation (BP) neural network as com
... Show MoreThis search has introduced the techniques of multi-wavelet transform and neural network for recognition 3-D object from 2-D image using patches. The proposed techniques were tested on database of different patches features and the high energy subband of discrete multi-wavelet transform DMWT (gp) of the patches. The test set has two groups, group (1) which contains images, their (gp) patches and patches features of the same images as a part of that in the data set beside other images, (gp) patches and features, and group (2) which contains the (gp) patches and patches features the same as a part of that in the database but after modification such as rotation, scaling and translation. Recognition by back propagation (BP) neural network as
... Show MoreThe microbend sensor is designed to experience a light loss when force is applied to the sensor. The periodic microbends cause propagating light to couple into higher order modes, the existing higher order modes become unguided modes. Three models of deform cells are fabricated at (3, 5, 8) mm pitchand tested by using MMF and laser source at 850 nm. The maximum output power of (8, 5, 3)mm model is (3, 2.7, 2.55)nW respectively at applied force 5N and the minimum value is (1.9, 1.65, 1.5)nW respectively at 60N.The strain is calculated at different microbend cells ,and the best sensitivity of this sensor for cell 8mm is equal to 0.6nW/N.