Transformation and many other substitution methods have been used to solve non-linear differential fractional equations. In this present work, the homotopy perturbation method to solve the non-linear differential fractional equation with the help of He’s Polynomials is provided as the transformation plays an essential role in solving differential linear and non-linear equations. Here is the α-Sumudu technique to find the relevant results of the gas dynamics equation in fractional order. To calculate the non-linear fractional gas dynamical problem, a consumer method created on the new homotopy perturbation a-Sumudu transformation method (HP TM) is suggested. In the Caputo type, the derivative is evaluated. a-Sumudu homotopy perturbation technique and He’s polynomials are all incorporated in the HPSaTM. The availability of He’s polynomials could be used to conveniently manage the non-linearity. The suggested approach shows that the strategy is simple to implement and provides results that can be compared to the results gained from any other transformation technique.
In this research, nanofibers have been prepared by using an electrospinning method. Three types of polymer (PVA, VC, PMMA) have been used with different concentration. The applied voltage and the gap length were changed. It was observed that VC is the best polymer than the other types of polymers.
This article investigates the relationship between foot angle and jump stability, focusing on minimizing injury risk. Here are the key points: Importance: Understanding foot angle is crucial for improving jump stability, athletic performance, and reducing jump-related injuries like ankle sprains. Ideal Foot Angle: Research suggests a forward foot angle of around 15 degrees might be ideal for many people during jumps. This angle distributes forces evenly across the foot, lowers the center of gravity, and provides more surface area for pushing off the ground. Factors Affecting Ideal Angle: The optimal angle can vary depending on the type of jump (vertical vs. long jump), fitness level, and personal preference. Incorrect Foot Angles: Landing w
... Show MoreIn this work, ZnO nanostructures for powder ZnO were synthesized by Hydrothermal Method. Size and shape of ZnO nanostructureas can be controlled by change ammonia concentration. In the preparation of ZnO nanostructure, zinc nitrate hexahydrate [Zn(NO3)2·6H2O] was used as a precursor. The structure and morphology of ZnO nanostructure have been characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD). The synthesized ZnO nanostructures have a hexagonal wurtzite structure. Also using Zeta potential and Particle Size Analyzers and size distribution of the ZnO powder
The emergence of new dangerous diseases worldwide has led to the need to think about the possibility of enhancing prevention by using new technologies. One of the most important requirements emphasized in the recent studies is the effectiveness of the masks against pathogenic bacteria. In this study, the efficiency of anti-infection protective face masks against bacteria was enhanced by using gold nanoparticles prepared by the chemical precipitation method. The absorption spectrum of the prepared gold suspension shows a clear plasmonic peak at 522 nm. The measurements showed that the sample was made of polypropylene fibers, where X-ray diffraction tests showed peaks matching its crystalline structure. Immersion with gold suspension led t
... Show MoreThe Cu(II) was found using a quick and uncomplicated procedure that involved reacting it with a freshly synthesized ligand to create an orange complex that had an absorbance peak of 481.5 nm in an acidic solution. The best conditions for the formation of the complex were studied from the concentration of the ligand, medium, the eff ect of the addition sequence, the eff ect of temperature, and the time of complex formation. The results obtained are scatter plot extending from 0.1–9 ppm and a linear range from 0.1–7 ppm. Relative standard deviation (RSD%) for n = 8 is less than 0.5, recovery % (R%) within acceptable values, correlation coeffi cient (r) equal 0.9986, coeffi cient of determination (r2) equal to 0.9973, and percentage capita
... Show MoreThis Research Tries To Investigate The Problem Of Estimating The Reliability Of Two Parameter Weibull Distribution,By Using Maximum Likelihood Method, And White Method. The Comparison Is done Through Simulation Process Depending On Three Choices Of Models (?=0.8 , ß=0.9) , (?=1.2 , ß=1.5) and (?=2.5 , ß=2). And Sample Size n=10 , 70, 150 We Use the Statistical Criterion Based On the Mean Square Error (MSE) For Comparison Amongst The Methods.
In this paper, our aim is to solve analytically a nonlinear social epidemic model as an initial value problem (IVP) of ordinary differential equations. The mathematical social epidemic model under study is applied to alcohol consumption model in Spain. The economic cost of alcohol consumption in Spain is affected by the amount of alcohol consumed. This paper refers to the study of alcohol consumption using some analytical methods. Adomian decomposition and variation iteration methods for solving alcohol consumption model have used. Finally, a compression between the analytic solutions of the two used methods and the previous actual values from 1997 to 2007 years is obtained using the absolute and
... Show MoreIn this paper, a new procedure is introduced to estimate the solution for the three-point boundary value problem which is instituted on the use of Morgan-Voyce polynomial. In the beginning, Morgan-Voyce polynomial along with their important properties is introduced. Next, this polynomial with aid of the collocation method utilized to modify the differential equation with boundary conditions to the algebraic system. Finally, the examples approve the validity and accuracy of the proposed method.
This paper discussed the solution of an equivalent circuit of solar cell, where a single diode model is presented. The nonlinear equation of this model has suggested and analyzed an iterative algorithm, which work well for this equation with a suitable initial value for the iterative. The convergence of the proposed method is discussed. It is established that the algorithm has convergence of order six. The proposed algorithm is achieved with a various values of load resistance. Equation by means of equivalent circuit of a solar cell so all the determinations is achieved using Matlab in ambient temperature. The obtained results of this new method are given and the absolute errors is demonstrated.
In this study, we investigate about the estimation improvement for Autoregressive model of the third order, by using Levinson-Durbin Recurrence (LDR) and Weighted Least Squares Error ( WLSE ).By generating time series from AR(3) model when the error term for AR(3) is normally and Non normally distributed and when the error term has ARCH(q) model with order q=1,2.We used different samples sizes and the results are obtained by using simulation. In general, we concluded that the estimation improvement for Autoregressive model for both estimation methods (LDR&WLSE), would be by increasing sample size, for all distributions which are considered for the error term , except the lognormal distribution. Also we see that the estimation improve
... Show More