Preferred Language
Articles
/
jih-2292
Approximate Solutions for Alcohol Consumption Model in Spain

     In this paper, our aim is to solve analytically a nonlinear social epidemic model as an initial value problem (IVP) of ordinary differential equations. The mathematical social epidemic model under study is applied to alcohol consumption model in Spain. The economic cost of alcohol consumption in Spain is affected by the amount of alcohol consumed. This paper refers to the study of alcohol consumption using some analytical methods. Adomian decomposition and variation iteration methods for solving alcohol consumption model have used. Finally, a compression between the analytic solutions of the two used methods and the previous actual values from 1997 to 2007 years is obtained using the absolute and relative errors. The analysis results obtained have been discussed tabularly and graphically.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Feb 28 2020
Journal Name
Iraqi Journal Of Science
Approximate Solutions of Nonlinear Smoking Habit Model

     The work in this paper focuses on solving numerically and analytically a  nonlinear social epidemic model that represents an initial value problem  of ordinary differential equations. A recent moking habit model from Spain is applied and studied here. The accuracy and convergence of the numerical and approximation results are investigated for various methods; for example, Adomian decomposition, variation iteration, Finite difference and Runge-Kutta. The discussion of the present results has been tabulated and graphed. Finally, the comparison between the analytic and numerical solutions from the period 2006-2009 has been obtained by absolute and difference measure error.

Scopus (10)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Jan 20 2024
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Novel Approximate Solutions for Nonlinear Blasius Equations

The method of operational matrices based on different types of polynomials such as Bernstein, shifted Legendre and Bernoulli polynomials will be presented and implemented to solve the nonlinear Blasius equations approximately. The nonlinear differential equation will be converted into a system of nonlinear algebraic equations that can be solved using Mathematica®12. The efficiency of these methods has been studied by calculating the maximum error remainder ( ), and it was found that their efficiency increases as the polynomial degree (n) increases, since the errors decrease. Moreover, the approximate solutions obtained by the proposed methods are compared with the solution of the 4th order Runge-Kutta meth

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Oct 28 2020
Journal Name
Iraqi Journal Of Science
Approximate Solutions for Systems of Volterra Integro-differential Equations Using Laplace –Adomian Method

Some modified techniques are used in this article in order to have approximate solutions for systems of Volterra integro-differential equations. The suggested techniques are the so called Laplace-Adomian decomposition method and Laplace iterative method. The proposed methods are robust and accurate as can be seen from the given illustrative examples and from the comparison that are made with the exact solution.

Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Jan 01 2015
Journal Name
Aip Conference Proceedings
Numerical solution for weight reduction model due to health campaigns in Spain

This paper introduces a non-conventional approach with multi-dimensional random sampling to solve a cocaine abuse model with statistical probability. The mean Latin hypercube finite difference (MLHFD) method is proposed for the first time via hybrid integration of the classical numerical finite difference (FD) formula with Latin hypercube sampling (LHS) technique to create a random distribution for the model parameters which are dependent on time t . The LHS technique gives advantage to MLHFD method to produce fast variation of the parameters’ values via number of multidimensional simulations (100, 1000 and 5000). The generated Latin hypercube sample which is random or non-deterministic in nature is further integrated with the FD method t

... Show More
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
View Publication
Publication Date
Thu Apr 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Convergence To Approximate Solutions of Multivalued Operators

The goal of this study is to provide a new explicit iterative process method  approach for solving maximal monotone(M.M )operators in Hilbert spaces utilizing a finite family of different types of  mappings as( nonexpansive mappings,resolvent mappings and projection mappings. The findings given in this research strengthen and extend key previous findings in the literature. Then, utilizing various structural conditions in Hilbert space and variational inequality problems, we examine the strong convergence to nearest point projection for these explicit iterative process methods Under the presence of two important conditions for convergence, namely closure and convexity. The findings reported in this research strengthen and extend

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Oct 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Novel Approximate Solutions for Nonlinear Initial and Boundary Value Problems

This paper investigates an effective computational method (ECM) based on the standard polynomials used to solve some nonlinear initial and boundary value problems appeared in engineering and applied sciences. Moreover, the effective computational methods in this paper were improved by suitable orthogonal base functions, especially the Chebyshev, Bernoulli, and Laguerre polynomials, to obtain novel approximate solutions for some nonlinear problems. These base functions enable the nonlinear problem to be effectively converted into a nonlinear algebraic system of equations, which are then solved using Mathematica®12. The improved effective computational methods (I-ECMs) have been implemented to solve three applications involving

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Mar 30 2021
Journal Name
Baghdad Science Journal
Approximate Analytical Solutions of Bright Optical Soliton for Nonlinear Schrödinger Equation of Power Law Nonlinearity

This paper introduces the Multistep Modified Reduced Differential Transform Method (MMRDTM). It is applied to approximate the solution for Nonlinear Schrodinger Equations (NLSEs) of power law nonlinearity. The proposed method has some advantages. An analytical approximation can be generated in a fast converging series by applying the proposed approach. On top of that, the number of computed terms is also significantly reduced. Compared to the RDTM, the nonlinear term in this method is replaced by related Adomian polynomials prior to the implementation of a multistep approach. As a consequence, only a smaller number of NLSE computed terms are required in the attained approximation. Moreover, the approximation also converges rapidly over a

... Show More
Scopus (11)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
Approximate Numerical Solutions for Linear Volterra Integral Equations Using Touchard Polynomials

In this paper, Touchard polynomials (TPs) are presented for solving Linear Volterra integral equations of the second kind (LVIEs-2k) and the first kind (LVIEs-1k) besides, the singular kernel type of this equation. Illustrative examples show the efficiency of the presented method, and the approximate numerical (AN) solutions are compared with one another method in some examples. All calculations and graphs are performed by program MATLAB2018b.

Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sat Oct 30 2021
Journal Name
Iraqi Journal Of Science
Variational Approximate Solutions of Fractional Delay Differential Equations with Integral Transform

     The idea of the paper is to consolidate Mahgoub transform and variational iteration method (MTVIM) to solve fractional delay differential equations (FDDEs). The fractional derivative was in Caputo sense. The convergences of approximate solutions to exact solution were quick. The MTVIM is characterized by ease of application in various problems and is capable of simplifying the size of computational operations.  Several non-linear (FDDEs) were analytically solved as illustrative examples and the results were compared numerically. The results for accentuating the efficiency, performance, and activity of suggested method were shown by comparisons with Adomian Decomposition Method (ADM), Laplace Adomian Decompos

... Show More
Scopus (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Jul 03 2005
Journal Name
Journal Of The Faculty Of Medicine Baghdad
Decrease of Serum AST, ALT, and GGT among Male Alcohol Drinkers with Coffee Consumption Habit.

Summary:
Background: Alcohol is the most important causes of liver cirrhosis. Many of the factors underlying the development of alcoholic liver diseases remain unknown. Recently, some epidemiological studies showed beneficial effects of coffee against the occurrence of alcoholic liver cirrhosis and upon serum liver enzymes level. These observations have been examined in this work.
Patients and Methods: The relation of coffee drinking to serum GGT, AST and ALT activities were examined in 59 alcoholic male patients with or without habit of coffee consumption. 35 (59.3%) out of 59 patients were alcoholic drinkers without coffee consumption habit, and 24(40.7%) were alcohol drinkers with coffee consumption. In addition to 24 healthy pe

... Show More
Crossref
View Publication Preview PDF