Transformation and many other substitution methods have been used to solve non-linear differential fractional equations. In this present work, the homotopy perturbation method to solve the non-linear differential fractional equation with the help of He’s Polynomials is provided as the transformation plays an essential role in solving differential linear and non-linear equations. Here is the α-Sumudu technique to find the relevant results of the gas dynamics equation in fractional order. To calculate the non-linear fractional gas dynamical problem, a consumer method created on the new homotopy perturbation a-Sumudu transformation method (HP TM) is suggested. In the Caputo type, the derivative is evaluated. a-Sumudu homotopy perturbation technique and He’s polynomials are all incorporated in the HPSaTM. The availability of He’s polynomials could be used to conveniently manage the non-linearity. The suggested approach shows that the strategy is simple to implement and provides results that can be compared to the results gained from any other transformation technique.
The presented work includes the Homotopy Transforms of Analysis Method (HTAM). By this method, the approximate solution of nonlinear Navier- Stokes equations of fractional order derivative was obtained. The Caputo's derivative was used in the proposed method. The desired solution was calculated by using the convergent power series to the components. The obtained results are demonstrated by comparison with the results of Adomain decomposition method, Homotopy Analysis method and exact solution, as explained in examples (4.1) and (4.2). The comparison shows that the used method is powerful and efficient.
In this article, the backstepping control scheme is proposed to stabilize the fractional order Riccati matrix differential equation with retarded arguments in which the fractional derivative is presented using Caputo's definition of fractional derivative. The results are established using Mittag-Leffler stability. The fractional Lyapunov function is defined at each stage and the negativity of an overall fractional Lyapunov function is ensured by the proper selection of the control law. Numerical simulation has been used to demonstrate the effectiveness of the proposed control scheme for stabilizing such type of Riccati matrix differential equations.
In this paper, double Sumudu and double Elzaki transforms methods are used to compute the numerical solutions for some types of fractional order partial differential equations with constant coefficients and explaining the efficiently of the method by illustrating some numerical examples that are computed by using Mathcad 15.and graphic in Matlab R2015a.
An efficient modification and a novel technique combining the homotopy concept with Adomian decomposition method (ADM) to obtain an accurate analytical solution for Riccati matrix delay differential equation (RMDDE) is introduced in this paper . Both methods are very efficient and effective. The whole integral part of ADM is used instead of the integral part of homotopy technique. The major feature in current technique gives us a large convergence region of iterative approximate solutions .The results acquired by this technique give better approximations for a larger region as well as previously. Finally, the results conducted via suggesting an efficient and easy technique, and may be addressed to other non-linear problems.
In this paper, several types of space-time fractional partial differential equations has been solved by using most of special double linear integral transform â€double Sumudu â€. Also, we are going to argue the truth of these solutions by another analytically method “invariant subspace methodâ€. All results are illustrative numerically and graphically.
In this paper, the dynamical behavior of a three-dimensional fractional-order prey-predator model is investigated with Holling type III functional response and constant rate harvesting. It is assumed that the middle predator species consumes only the prey species, and the top predator species consumes only the middle predator species. We also prove the boundedness, the non-negativity, the uniqueness, and the existence of the solutions of the proposed model. Then, all possible equilibria are determined, and the dynamical behaviors of the proposed model around the equilibrium points are investigated. Finally, numerical simulations results are presented to confirm the theoretical results and to give a better understanding of the dynami
... Show MoreIn this paper, the time-fractional Fisher’s equation (TFFE) is considered to exam the analytical solution using the Laplace q-Homotopy analysis method (Lq-HAM)â€. The Lq-HAM is a combined form of q-homotopy analysis method (q-HAM) and Laplace transform. The aim of utilizing the Laplace transform is to outdo the shortage that is mainly caused by unfulfilled conditions in the other analytical methods. The results show that the analytical solution converges very rapidly to the exact solution.
The aim of this paper is to employ the fractional shifted Legendre polynomials (FSLPs) in the matrix form to approximate the fractional derivatives and find the numerical solutions of the one-dimensional space-fractional bioheat equation (SFBHE). The Caputo formula was utilized to approximate the fractional derivative. The proposed methodology applied for two examples showed its usefulness and efficiency. The numerical results showed that the utilized technique is very efficacious with high accuracy and good convergence.
An α-fractional integral and derivative of real function have been introduced in new definitions and then, they compared with the existing definitions. According to the properties of these definitions, the formulas demonstrate that they are most significant and suitable in fractional integrals and derivatives. The definitions of α-fractional derivative and integral coincide with the existing definitions for the polynomials for 0 ≤ α < 1. Furthermore, if α = 1, the proposed definitions and the usual definition of integer derivative and integral are identical. Some of the properties of the new definitions are discussed and proved, as well, we have introduced some applications in the α- fractional derivatives and integral
... Show MoreIn this work, we employ a new normalization Bernstein basis for solving linear Freadholm of fractional integro-differential equations nonhomogeneous of the second type (LFFIDEs). We adopt Petrov-Galerkian method (PGM) to approximate solution of the (LFFIDEs) via normalization Bernstein basis that yields linear system. Some examples are given and their results are shown in tables and figures, the Petrov-Galerkian method (PGM) is very effective and convenient and overcome the difficulty of traditional methods. We solve this problem (LFFIDEs) by the assistance of Matlab10.