The goal of this study is to provide a new explicit iterative process method approach for solving maximal monotone(M.M )operators in Hilbert spaces utilizing a finite family of different types of mappings as( nonexpansive mappings,resolvent mappings and projection mappings. The findings given in this research strengthen and extend key previous findings in the literature. Then, utilizing various structural conditions in Hilbert space and variational inequality problems, we examine the strong convergence to nearest point projection for these explicit iterative process methods Under the presence of two important conditions for convergence, namely closure and convexity. The findings reported in this research strengthen and extend key previous findings from the literature
Optic Disc (OD) localization is a basic step for the screening, identification and appreciation of the risk of diverse ophthalmic pathologies such as glaucoma and diabetic retinopathy.In fact, the fundamental step towards an exact OD segmentation process is the success of OD localization. This paper proposes a fully automatic procedure for OD localization based on two of the OD most relevant features of high-intensity value and vasculature convergence. Merging ofthese two features renders the proposed method capable of localizing the OD within the variously complicated environments such as the faint disc boundary, unbalanced shading, and the existence of retinal pathologies like cotton wall and exudates,which usually share the same
... Show MoreThe relation between faithful, finitely generated, separated acts and the one-to-one operators was investigated, and the associated S-act of coshT and its attributes have been examined. In this paper, we proved for any bounded Linear operators T, VcoshT is faithful and separated S-act, and if a Banach space V is finite-dimensional, VcoshT is infinitely generated.
Recently, new generalizations have been presented for the hyponormal operators, which are (N, k)-hyponormal operators and (h, M)-hyponormal operators. Some properties of these concepts have also been proved, one of these properties is that the product of two (N, k)-hyponormal operator is also (N, k)- hyponormal operator and the product of two (h, M)-hyponormal operators is (h, M)-hyponormal operator. In our research, we will reprove these properties by using the (l,m)-commuting operator equations, in addition to that we will solve the (l, m)-commuting operator equations for (N, k)-hyponormal operators and (h, M)-hyponormal operators.
n this paper, we formulate three mathematical models using spline functions, such as linear, quadratic and cubic functions to approximate the mathematical model for incoming water to some dams. We will implement this model on dams of both rivers; dams on the Tigris are Mosul and Amara while dams on the Euphrates are Hadetha and Al-Hindya.
Recently, in 2014 [1] the authors introduced a general family of summation integral Baskakov-type operators ( ) . In this paper, we investigate approximation properties of partial sums for this general family.
In this study a new strain of mesophilic Bacillus subtilis AIK, recorded for the first time in Iraq, was used to remove nickel (Ni) from aqueous solutions. The factors that affect bioremediation include temperature, pH value and metal concentrations. The results showed that the highest removal efficiency (R%) was 54, 52 and 48% at 25⁰C and pH of 5, 7 and 9, and with 10 ppm Ni concentration respectively. Whereas the highest R% recorded was 47, 45 and 52% at 30⁰C and of pH 5, 7, and 9 with 1 ppm Ni concentration respectively. On the other hand, the highest R% at 40⁰C was 49, 46, 42 % at pH 5, 7 and 9, with 5, 10 and 10 ppm Ni concentrations respectively. The results also showed that the optimum pH value for Ni removal at bot
... Show MoreIn this paper,the homtopy perturbation method (HPM) was applied to obtain the approximate solutions of the fractional order integro-differential equations . The fractional order derivatives and fractional order integral are described in the Caputo and Riemann-Liouville sense respectively. We can easily obtain the solution from convergent the infinite series of HPM . A theorem for convergence and error estimates of the HPM for solving fractional order integro-differential equations was given. Moreover, numerical results show that our theoretical analysis are accurate and the HPM can be considered as a powerful method for solving fractional order integro-diffrential equations.
... Show More<p> Traditionally, wireless networks and optical fiber Networks are independent of each other. Wireless networks are designed to meet specific service requirements, while dealing with weak physical transmission, and maximize system resources to ensure cost effectiveness and satisfaction for the end user. In optical fiber networks, on the other hand, search efforts instead concentrated on simple low-cost, future-proofness against inheritance and high services and applications through optical transparency. The ultimate goal of providing access to information when needed, was considered significantly. Whatever form it is required, not only increases the requirement sees technology convergence of wireless and optical networks but
... Show MoreThe goal beyond this Research is to review methods that used to estimate Logistic distribution parameters. An exact estimators method which is the Moment method, compared with other approximate estimators obtained essentially from White approach such as: OLS, Ridge, and Adjusted Ridge as a suggested one to be applied with this distribution. The Results of all those methods are based on Simulation experiment, with different models and variety of sample sizes. The comparison had been made with respect to two criteria: Mean Square Error (MSE) and Mean Absolute Percentage Error (MAPE).
A complex number is called an extended eigenvalue for an operator on a Hilbert space H if there exists a nonzero operator such that: such is called an extended eigenoperator corresponding to. The goal of this paper is to calculate extended eigenvalues and extended eigenoperators for the weighted unilateral (Forward and Backward) shift operators. We also find an extended eigenvalues for weighted bilateral shift operator. Moreover, the closedness of extended eigenvalues for the weighted unilateral (Forward and Backward) shift operators under multiplication is proven.