Preferred Language
Articles
/
jih-3023
Convergence To Approximate Solutions of Multivalued Operators
...Show More Authors

The goal of this study is to provide a new explicit iterative process method  approach for solving maximal monotone(M.M )operators in Hilbert spaces utilizing a finite family of different types of  mappings as( nonexpansive mappings,resolvent mappings and projection mappings. The findings given in this research strengthen and extend key previous findings in the literature. Then, utilizing various structural conditions in Hilbert space and variational inequality problems, we examine the strong convergence to nearest point projection for these explicit iterative process methods Under the presence of two important conditions for convergence, namely closure and convexity. The findings reported in this research strengthen and extend key previous findings from the literature

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Mar 04 2018
Journal Name
Baghdad Science Journal
An Approximate Solution of some Variational Problems Using Boubaker Polynomials
...Show More Authors

In this paper, an approximate solution of nonlinear two points boundary variational problem is presented. Boubaker polynomials have been utilized to reduce these problems into quadratic programming problem. The convergence of this polynomial has been verified; also different numerical examples were given to show the applicability and validity of this method.

View Publication Preview PDF
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Mon Mar 11 2019
Journal Name
Baghdad Science Journal
Properties of Fuzzy Compact Linear Operators on Fuzzy Normed Spaces
...Show More Authors

In this paper the definition of fuzzy normed space is recalled and its basic properties. Then the definition of fuzzy compact operator from fuzzy normed space into another fuzzy normed space is introduced after that the proof of an operator is fuzzy compact if and only if the image of any fuzzy bounded sequence contains a convergent subsequence is given. At this point the basic properties of the vector space FC(V,U)of all fuzzy compact linear operators are investigated such as when U is complete and the sequence ( ) of fuzzy compact operators converges to an operator T then T must be fuzzy compact. Furthermore we see that when T is a fuzzy compact operator and S is a fuzzy bounded operator then the composition TS and ST are fuzzy compact

... Show More
View Publication Preview PDF
Scopus (12)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Thu Jul 20 2023
Journal Name
Bn Al-haitham Journal For Pure And Applied Sciences
Analytical Solutions to Investigate Fractional Newell-Whitehead Nonlinear Equationusing SumuduTransform Decomposition Method
...Show More Authors

Some nonlinear differential equations with fractional order are evaluated using a novel approach, the Sumudu and Adomian Decomposition Technique (STADM). To get the results of the given model, the Sumudu transformation and iterative technique are employed. The suggested method has an advantage over alternative strategies in that it does not require additional resources or calculations. This approach works well, is easy to use, and yields good results. Besides, the solution graphs are plotted using MATLAB software. Also, the true solution of the fractional Newell-Whitehead equation is shown together with the approximate solutions of STADM. The results showed our approach is a great, reliable, and easy method to deal with specific problems in

... Show More
Publication Date
Thu Nov 17 2022
Journal Name
Journal Of Interdisciplinary Mathematics
Study on approximate analytical methods for nonlinear differential equations
...Show More Authors

In this work, an analytical approximation solution is presented, as well as a comparison of the Variational Iteration Adomian Decomposition Method (VIADM) and the Modified Sumudu Transform Adomian Decomposition Method (M STADM), both of which are capable of solving nonlinear partial differential equations (NPDEs) such as nonhomogeneous Kertewege-de Vries (kdv) problems and the nonlinear Klein-Gordon. The results demonstrate the solution’s dependability and excellent accuracy.

Scopus (8)
Scopus
Publication Date
Thu Feb 01 2018
Journal Name
Italian Journal Of Pure And Applied Mathematics
A note on s-acts and bounded linear operators
...Show More Authors

Scopus (1)
Scopus
Publication Date
Sun Dec 01 2013
Journal Name
Al- Mustansiriyah Journal Science
Convex Approximation by q- Meyer-König-Zeller Durrmeyer Operators
...Show More Authors

Publication Date
Thu Jul 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Analytical Solutions to Investigate Fractional Newell-Whitehead Nonlinear Equation Using Sumudu Transform Decomposition Method
...Show More Authors

Some nonlinear differential equations with fractional order are evaluated using a novel approach, the Sumudu and Adomian Decomposition Technique (STADM). To get the results of the given model, the Sumudu transformation and iterative technique are employed. The suggested method has an advantage over alternative strategies in that it does not require additional resources or calculations. This approach works well, is easy to use, and yields good results. Besides, the solution graphs are plotted using MATLAB software. Also, the true solution of the fractional Newell-Whitehead equation is shown together with the approximate solutions of STADM. The results showed our approach is a great, reliable, and easy method to deal with specific problems

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 29 2023
Journal Name
International Journal Of Nonlinear Analysis And Applications (ijnaa)
Applying a suitable approximate-simulation technique of an epidemic model with random parameters
...Show More Authors

Because the Coronavirus epidemic spread in Iraq, the COVID-19 epidemic of people quarantined due to infection is our application in this work. The numerical simulation methods used in this research are more suitable than other analytical and numerical methods because they solve random systems. Since the Covid-19 epidemic system has random variables coefficients, these methods are used. Suitable numerical simulation methods have been applied to solve the COVID-19 epidemic model in Iraq. The analytical results of the Variation iteration method (VIM) are executed to compare the results. One numerical method which is the Finite difference method (FD) has been used to solve the Coronavirus model and for comparison purposes. The numerical simulat

... Show More
Publication Date
Wed Jan 01 2020
Journal Name
Nodes In Transport Networks – Research, Data Analysis And Modelling
Suggested Solutions to Reduce Traffic Congestion During Rush Hours in Al-Jadriya Intersection
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Tue Feb 20 2024
Journal Name
Baghdad Science Journal
Some Results about Acts over Monoid and Bounded Linear Operators
...Show More Authors

This study delves into the properties of the associated act V over the monoid S of sinshT. It examines the relationship between faithful, finitely generated, and separated acts, as well as their connections to one-to-one and onto operators. Additionally, the correlation between acts over a monoid and modules over a ring is explored. Specifically, it is established that  functions as an act over S if and only if  functions as module, where T represents a nilpotent operator. Furthermore, it is proved that when T is onto operator and  is finitely generated, is guaranteed to be finite-dimensional. Prove that for any bounded operator the following,  is acting over S if and only if  is a module where T is a nilpotent operator, is a

... Show More
View Publication
Scopus Clarivate Crossref