Preferred Language
Articles
/
bsj-2448
An Approximate Solution of some Variational Problems Using Boubaker Polynomials

In this paper, an approximate solution of nonlinear two points boundary variational problem is presented. Boubaker polynomials have been utilized to reduce these problems into quadratic programming problem. The convergence of this polynomial has been verified; also different numerical examples were given to show the applicability and validity of this method.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jul 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Direct Method for Variational Problems Using Boubaker Wavelets

The wavelets have many applications in engineering and the sciences, especially mathematics. Recently, in 2021, the wavelet Boubaker (WB) polynomials were used for the first time to study their properties and applications in detail. They were also utilized for solving the Lane-Emden equation. The aim of this paper is to show the truncated Wavelet Boubaker polynomials for solving variation problems. In this research, the direct method using wavelets Boubaker was presented for solving variational problems. The method reduces the problem into a set of linear algebraic equations. The fundamental idea of this method for solving variation problems is to convert the problem of a function into one that involves a finite number of variables. Diff

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Jun 03 2012
Journal Name
Baghdad Science Journal
Approximate Solution of Some Classes of Integral Equations Using Bernstein Polynomials of Two-Variables

The research aims to find approximate solutions for two dimensions Fredholm linear integral equation. Using the two-variables of the Bernstein polynomials we find a solution to the approximate linear integral equation of the type two dimensions. Two examples have been discussed in detail.

Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sun Sep 04 2011
Journal Name
Baghdad Science Journal
Approximate Solution of Delay Differential Equations Using the Collocation Method Based on Bernstien Polynomials???? ???????? ????????? ????????? ????????? ???????? ?????????? ???????? ??? ??????? ???? ?????????

In this paper a modified approach have been used to find the approximate solution of ordinary delay differential equations with constant delay using the collocation method based on Bernstien polynomials.

Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Computational Science
Crossref (21)
Crossref
View Publication
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Computational Science
Crossref (21)
Clarivate Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Partial Differential Equations In Applied Mathematics
A hybrid technique for solving fractional delay variational problems by the shifted Legendre polynomials

This study presents a practical method for solving fractional order delay variational problems. The fractional derivative is given in the Caputo sense. The suggested approach is based on the Laplace transform and the shifted Legendre polynomials by approximating the candidate function by the shifted Legendre series with unknown coefficients yet to be determined. The proposed method converts the fractional order delay variational problem into a set of (n + 1) algebraic equations, where the solution to the resultant equation provides us the unknown coefficients of the terminated series that have been utilized to approximate the solution to the considered variational problem. Illustrative examples are given to show that the recommended appro

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
An approximate solution for solving linear system of integral equation with application on "Stiff" problems

An approximate solution of the liner system of ntegral cquations fot both fredholm(SFIEs)and Volterra(SIES)types has been derived using taylor series expansion.The solusion is essentailly

View Publication Preview PDF
Publication Date
Sun Jun 07 2015
Journal Name
Baghdad Science Journal
Direct method for Solving Nonlinear Variational Problems by Using Hermite Wavelets

In this work, we first construct Hermite wavelets on the interval [0,1) with it’s product, Operational matrix of integration 2^k M×2^k M is derived, and used it for solving nonlinear Variational problems with reduced it to a system of algebric equations and aid of direct method. Finally, some examples are given to illustrate the efficiency and performance of presented method.

Crossref
View Publication Preview PDF
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
Approximate Numerical Solutions for Linear Volterra Integral Equations Using Touchard Polynomials

In this paper, Touchard polynomials (TPs) are presented for solving Linear Volterra integral equations of the second kind (LVIEs-2k) and the first kind (LVIEs-1k) besides, the singular kernel type of this equation. Illustrative examples show the efficiency of the presented method, and the approximate numerical (AN) solutions are compared with one another method in some examples. All calculations and graphs are performed by program MATLAB2018b.

Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Solution of Variavle Delay integral eqiations using Variational approach

The main objective of this research is to use the methods of calculus ???????? solving integral equations Altbataah When McCann slowdown is a function of time as the integral equation used in this research is a kind of Volterra

View Publication Preview PDF