Let be a module over a commutative ring with identity. In this paper we intoduce the concept of Strongly Pseudo Nearly Semi-2-Absorbing submodule, where a proper submodule of an -module is said to be Strongly Pseudo Nearly Semi-2-Absorbing submodule of if whenever , for implies that either or , this concept is a generalization of 2_Absorbing submodule, semi 2-Absorbing submodule, and strong form of (Nearly–2–Absorbing, Pseudo_2_Absorbing, and Nearly Semi–2–Absorbing) submodules. Several properties characterizations, and examples concerning this new notion are given. We study the relation between Strongly Pseudo Nearly Semei-2-Absorbing submodule and (2_Absorbing, Nearly_2_Absorbing, Pseudo_2_Absorbing, and Nearly Semi–2–Absorbing) submodules and the converse of this relation is true under certain condition. Also, we introduced many characterizations of Strongly Pseudo Nearly Semei-2-Absorbing submodules in some types of modules.
Producing pseudo-random numbers (PRN) with high performance is one of the important issues that attract many researchers today. This paper suggests pseudo-random number generator models that integrate Hopfield Neural Network (HNN) with fuzzy logic system to improve the randomness of the Hopfield Pseudo-random generator. The fuzzy logic system has been introduced to control the update of HNN parameters. The proposed model is compared with three state-ofthe-art baselines the results analysis using National Institute of Standards and Technology (NIST) statistical test and ENT test shows that the projected model is statistically significant in comparison to the baselines and this demonstrates the competency of neuro-fuzzy based model to produce
... Show MoreLet R be an associative ring. In this paper we present the definition of (s,t)- Strongly derivation pair and Jordan (s,t)- strongly derivation pair on a ring R, and study the relation between them. Also, we study prime rings, semiprime rings, and rings that have commutator left nonzero divisior with (s,t)- strongly derivation pair, to obtain a (s,t)- derivation. Where s,t: R®R are two mappings of R.
The goal of this article is to construct fibrewise w-compact (resp. locally w-compact) spaces. Some related results and properties of these concepts will be investigated. Furthermore, we investigate various relationships between these concepts and three classes of fibrewise w-separation axioms.
An R-module M is called rationally extending if each submodule of M is rational in a direct summand of M. In this paper we study this class of modules which is contained in the class of extending modules, Also we consider the class of strongly quasi-monoform modules, an R-module M is called strongly quasi-monoform if every nonzero proper submodule of M is quasi-invertible relative to some direct summand of M. Conditions are investigated to identify between these classes. Several properties are considered for such modules
Let be a Banach space, be a nonempty closed convex subset of , and be self
nonexpansive map. The sequence generated by the iterative method
, where be a contractive mapping
and is a sequence in We generalize the mapping to non-sel -Strongly
Pseudocontractive .
The association of phytoplasma was investigated in symptomatic tomato (
In this paper, introduce a proposed multi-level pseudo-random sequence generator (MLPN). Characterized by its flexibility in changing generated pseudo noise (PN) sequence according to a key between transmitter and receiver. Also, introduce derive of the mathematical model for the MLPN generator. This method is called multi-level because it uses more than PN sequence arranged as levels to generation the pseudo-random sequence. This work introduces a graphical method describe the data processing through MLPN generation. This MLPN sequence can be changed according to changing the key between transmitter and receiver. The MLPN provides different pseudo-random sequence lengths. This work provides the ability to implement MLPN practically
... Show MoreIn this paper, a new class of nonconvex sets and functions called strongly -convex sets and strongly -convex functions are introduced. This class is considered as a natural extension of strongly -convex sets and functions introduced in the literature. Some basic and differentiability properties related to strongly -convex functions are discussed. As an application to optimization problems, some optimality properties of constrained optimization problems are proved. In these optimization problems, either the objective function or the inequality constraints functions are strongly -convex.