A non-polynomial spline (NPS) is an approximation method that relies on the triangular and polynomial parts, so the method has infinite derivatives of the triangular part of the NPS to compensate for the loss of smoothness inherited by the polynomial. In this paper, we propose polynomial-free linear and quadratic spline types to solve fuzzy Volterra integral equations (FVIE) of the 2nd kind with the weakly singular kernel (FVIEWSK) and Abel's type kernel. The linear type algorithm gives four parameters to form a linear spline. In comparison, the quadratic type algorithm gives five parameters to create a quadratic spline, which is more of a credit for the exact solution. These algorithms process kernel singularities with a simple technique. Illustrative examples use MathCad software to deal with upper and lower-bound solutions to fuzzy problems. The method provides a reliable way to ensure that an exact solution is approximated. Also, figures and tables show the potential of the method.
Objective: to evaluate the results of (Modification of Russe method) in treatment of nonunion fracture scaphoid bone by bone graft with external splintage (plaster of paris cast (pop ). Methods:Prospective study done on 26 patients (24 male, 2 female), age range between 25-42 years (mean age 34 years), fracture site at middle 1/3 with minimal displacements with no carpal bone or radial bone injury, technique of Matte- Russe method (explore the bone through volar approach using bone graft from iliac crest (cortico-cancellous peg plus cancellus bone) with thumb spica for 90 days with period of follow up 12-18 months. Results: out of 26 patients treated by this method , 23 patients (88.5%) union was achieved radiologically by the end of 3rd mo
... Show Moreالوصف In this time, most researchers toward about preparation of compounds according to green chemistry. This research describes the preparation of 2-fluoro-5-(substituted benzylideneamino) benzonitrile under reflux and microwave methods. Six azomethine compounds (B1-6) were synthesized by two methods under reflux and assisted microwave with the comparison between the two methods. Reflux method was prepared of azomethine (B1-6) by reaction of 5-amino-2-fluorobenzonitrile with some aldehyde derivatives with (50–100) mL of absolute ethanol and some quantity of GAA and time is limited between (2–5) hours with a yield between (60–70) percent with recrystallization for appropriate solvents. But the microwave-assisted method was synthe
... Show MoreIn this paper we tend to describe the notions of intuitionistic fuzzy asly ideal of ring indicated by (I. F.ASLY) ideal and, we will explore some properties and connections about this concept.
This paper introduce two types of edge degrees (line degree and near line degree) and total edge degrees (total line degree and total near line degree) of an edge in a fuzzy semigraph, where a fuzzy semigraph is defined as (V, σ, μ, η) defined on a semigraph G* in which σ : V → [0, 1], μ : VxV → [0, 1] and η : X → [0, 1] satisfy the conditions that for all the vertices u, v in the vertex set, μ(u, v) ≤ σ(u) ᴧ σ(v) and η(e) = μ(u1, u2) ᴧ μ(u2, u3) ᴧ … ᴧ μ(un-1, un) ≤ σ(u1) ᴧ σ(un), if e = (u1, u2, …, un), n ≥ 2 is an edge in the semigraph G
... Show MoreThe regressor-based adaptive control is useful for controlling robotic systems with uncertain parameters but with known structure of robot dynamics. Unmodeled dynamics could lead to instability problems unless modification of control law is used. In addition, exact calculation of regressor for robots with more than 6 degrees of freedom is hard to be calculated, and the task could be more complex for robots. Whereas the adaptive approximation control is a powerful tool for controlling robotic systems with unmodeled dynamics. The local (partitioned) approximation-based adaptive control includes representation of the uncertain matrices and vectors in the robot model as finite combinations of basis functions. Update laws for the weighting matri
... Show MoreThe aim of this paper, is to study different iteration algorithms types two steps called, modified SP, Ishikawa, Picard-S iteration and M-iteration, which is faster than of others by using like contraction mappings. On the other hand, the M-iteration is better than of modified SP, Ishikawa and Picard-S iterations. Also, we support our analytic proof with a numerical example.
The aim of this paper is to translate the basic properties of the classical complete normed algebra to the complete fuzzy normed algebra at this end a proof of multiplication fuzzy continuous is given. Also a proof of every fuzzy normed algebra without identity can be embedded into fuzzy normed algebra with identity and is an ideal in is given. Moreover the proof of the resolvent set of a non zero element in complete fuzzy normed space is equal to the set of complex numbers is given. Finally basic properties of the resolvent space of a complete fuzzy normed algebra is given.
In this paper, we introduce a new complex integral transform namely ”Complex Sadik Transform”. The
properties of this transformation are investigated. This complex integral transformation is used to reduce
the core problem to a simple algebraic equation. The answer to this primary problem can than be obtained
by solving this algebraic equation and applying the inverse of complex Sadik transformation. Finally,
the complex Sadik integral transformation is applied and used to find the solution of linear higher order
ordinary differential equations. As well as, we present and discuss, some important real life problems
such as: pharmacokinetics problem ,nuclear physics problem and Beams Probem