This research aims to numerically solve a nonlinear initial value problem presented as a system of ordinary differential equations. Our focus is on epidemiological systems in particular. The accurate numerical method that is the Runge-Kutta method of order four has been used to solve this problem that is represented in the epidemic model. The COVID-19 mathematical epidemic model in Iraq from 2020 to the next years is the application under study. Finally, the results obtained for the COVID-19 model have been discussed tabular and graphically. The spread of the COVID-19 pandemic can be observed via the behavior of the different stages of the model that approximates the behavior of actual the COVID-19 epidemic in Iraq. In our study, the COVID-19 pandemic will disappear during the next few years within about five years, through the behavior of all stages of the epidemic presented in our research.
The research seeks to examine the ability of fifth preparatory students in solving a mathematical problem in relation to system thinking. To this end, the researcher chose (140) fifth preparatory students from four-different secondary schools in Kirkuk city for the academic year (2016-2017). Two tests were adopted to collect study data: a test of (5) items about skills in solving math problem designed by (Al-raihan, 2006); and a test of system thinking skills designed by the researcher himself consisted of (14) items. It was divided into four skills (analyzing the main system to subsystems, eliminating all inner gaps of system, identifying the inner connection of system, and reorganizing the system). The findings indicated a good ability
... Show MoreThis paper aims to propose a hybrid approach of two powerful methods, namely the differential transform and finite difference methods, to obtain the solution of the coupled Whitham-Broer-Kaup-Like equations which arises in shallow-water wave theory. The capability of the method to such problems is verified by taking different parameters and initial conditions. The numerical simulations are depicted in 2D and 3D graphs. It is shown that the used approach returns accurate solutions for this type of problems in comparison with the analytic ones.
Abstract
The present paper attempts to detect the level of (COVID-19) pandemic panic attacks among university students, according to gender and stage variables.
To achieve this objective, the present paper adopts the scale set up by (Fathallah et al., 2021), which has been applied electronically to a previous cross-cultural sample consisting of (2285) participants from Arab countries, including Iraq. The scale includes, in its final form, (69) optional items distributed on (6) dimensions: physical symptoms (13) items, psychological and emotional symptoms (12) items, cognitive and mental symptoms (11) items, social symptoms (8) items, general symptoms (13) items and daily living practices (12) items
... Show MoreAbstract
The pressures of life have become a tangible phenomenon in all societies in varying degrees. This disparity determines several factors, including the nature of societies, the level of their urbanization, the intensity of interaction, the intensity of conflict, and the increasing rate of change in those societies. many people name The modern era in which we live the “era of pressures", where one of the most important of these changes is the “new Coronavirus 19-COVID”, which has spread widely throughout the world, as the pandemic, has affected all aspects of daily life, including the educational and academic process, academic activities have been suspended in universities, which caused sudden change
... Show MoreEstimation of the unknown parameters in 2-D sinusoidal signal model can be considered as important and difficult problem. Due to the difficulty to find estimate of all the parameters of this type of models at the same time, we propose sequential non-liner least squares method and sequential robust M method after their development through the use of sequential approach in the estimate suggested by Prasad et al to estimate unknown frequencies and amplitudes for the 2-D sinusoidal compounds but depending on Downhill Simplex Algorithm in solving non-linear equations for the purpose of obtaining non-linear parameters estimation which represents frequencies and then use of least squares formula to estimate
... Show MoreThis paper is concerned with finding the approximation solution (APPS) of a certain type of nonlinear hyperbolic boundary value problem (NOLHYBVP). The given BVP is written in its discrete (DI) weak form (WEF), and is proved that it has a unique APPS, which is obtained via the mixed Galerkin finite element method (GFE) with implicit method (MGFEIM) that reduces the problem to solve the Galerkin nonlinear algebraic system (GNAS). In this part, the predictor and the corrector technique (PT and CT) are proved convergent and are used to transform the obtained GNAS to linear (GLAS ), then the GLAS is solved using the Cholesky method (ChMe). The stability and the convergence of the method are studied. The results
... Show More