This research aims to numerically solve a nonlinear initial value problem presented as a system of ordinary differential equations. Our focus is on epidemiological systems in particular. The accurate numerical method that is the Runge-Kutta method of order four has been used to solve this problem that is represented in the epidemic model. The COVID-19 mathematical epidemic model in Iraq from 2020 to the next years is the application under study. Finally, the results obtained for the COVID-19 model have been discussed tabular and graphically. The spread of the COVID-19 pandemic can be observed via the behavior of the different stages of the model that approximates the behavior of actual the COVID-19 epidemic in Iraq. In our study, the COVID-19 pandemic will disappear during the next few years within about five years, through the behavior of all stages of the epidemic presented in our research.
With time progress importance of hiding information become more and more and all steganography applications is like computer games between hiding and extracting data, or like thieves and police men always thieve hides from police men in different ways to keep him out of prison. The sender always hides information in new way in order not to be understood by the attackers and only the authorized receiver can open the hiding message. This paper explores our proposed random method in detail, how chooses locations of pixel in randomly , how to choose a random bit to hide information in the chosen pixel, how it different from other approaches, how applying information hiding criteria on the proposed project, and attempts to test out in code, and
... Show MoreThe research seeks to examine the ability of fifth preparatory students in solving a mathematical problem in relation to system thinking. To this end, the researcher chose (140) fifth preparatory students from four-different secondary schools in Kirkuk city for the academic year (2016-2017). Two tests were adopted to collect study data: a test of (5) items about skills in solving math problem designed by (Al-raihan, 2006); and a test of system thinking skills designed by the researcher himself consisted of (14) items. It was divided into four skills (analyzing the main system to subsystems, eliminating all inner gaps of system, identifying the inner connection of system, and reorganizing the system). The findings indicated a good ability
... Show MoreIn this article, we aim to define a universal set consisting of the subscripts of the fuzzy differential equation (5) except the two elements and , subsets of that universal set are defined according to certain conditions. Then, we use the constructed universal set with its subsets for suggesting an analytical method which facilitates solving fuzzy initial value problems of any order by using the strongly generalized H-differentiability. Also, valid sets with graphs for solutions of fuzzy initial value problems of higher orders are found.
In this paper, we describe the cases of marriage and divorce in the city of Baghdad on both sides of Rusafa and Karkh, we collected the data in this research from the Supreme Judicial Council and used the cubic spline interpolation method to estimate the function that passing through given points as well as the extrapolation method which was applied for estimating the cases of marriage and divorce for the next year and comparison between Rusafa and Karkh by using the MATLAB program.
In this research, Haar wavelets method has been utilized to approximate a numerical solution for Linear state space systems. The solution technique is used Haar wavelet functions and Haar wavelet operational matrix with the operation to transform the state space system into a system of linear algebraic equations which can be resolved by MATLAB over an interval from 0 to . The exactness of the state variables can be enhanced by increasing the Haar wavelet resolution. The method has been applied for different examples and the simulation results have been illustrated in graphics and compared with the exact solution.
In our article, three iterative methods are performed to solve the nonlinear differential equations that represent the straight and radial fins affected by thermal conductivity. The iterative methods are the Daftardar-Jafari method namely (DJM), Temimi-Ansari method namely (TAM) and Banach contraction method namely (BCM) to get the approximate solutions. For comparison purposes, the numerical solutions were further achieved by using the fourth Runge-Kutta (RK4) method, Euler method and previous analytical methods that available in the literature. Moreover, the convergence of the proposed methods was discussed and proved. In addition, the maximum error remainder values are also evaluated which indicates that the propo
... Show MoreBackground: The global threat of COVID-19 outbreak and on the 11 March 2020, WHO acknowledged that the virus would likely spread to all countries across the globe and declared the coronavirus outbreak a pandemic which is the fifth pandemic since 20 century and this has brought human lives to a sudden and complete lockdown and the confirmed cases of this disease and deaths continue to rise in spite of people around the world are taking important actions to mitigate and decrease transmission and save lives. Objectives: To assess the effect of exercise and physical activity on the immunity against COVID-19. Methods: Collected electronic databases including (Medline, EMBASE, Google Scholar, PubMed and Web of Science) were searched with
... Show More