This research aims to numerically solve a nonlinear initial value problem presented as a system of ordinary differential equations. Our focus is on epidemiological systems in particular. The accurate numerical method that is the Runge-Kutta method of order four has been used to solve this problem that is represented in the epidemic model. The COVID-19 mathematical epidemic model in Iraq from 2020 to the next years is the application under study. Finally, the results obtained for the COVID-19 model have been discussed tabular and graphically. The spread of the COVID-19 pandemic can be observed via the behavior of the different stages of the model that approximates the behavior of actual the COVID-19 epidemic in Iraq. In our study, the COVID-19 pandemic will disappear during the next few years within about five years, through the behavior of all stages of the epidemic presented in our research.
In this article, we aim to define a universal set consisting of the subscripts of the fuzzy differential equation (5) except the two elements and , subsets of that universal set are defined according to certain conditions. Then, we use the constructed universal set with its subsets for suggesting an analytical method which facilitates solving fuzzy initial value problems of any order by using the strongly generalized H-differentiability. Also, valid sets with graphs for solutions of fuzzy initial value problems of higher orders are found.
In this paper Volterra Runge-Kutta methods which include: method of order two and four will be applied to general nonlinear Volterra integral equations of the second kind. Moreover we study the convergent of the algorithms of Volterra Runge-Kutta methods. Finally, programs for each method are written in MATLAB language and a comparison between the two types has been made depending on the least square errors.
With time progress importance of hiding information become more and more and all steganography applications is like computer games between hiding and extracting data, or like thieves and police men always thieve hides from police men in different ways to keep him out of prison. The sender always hides information in new way in order not to be understood by the attackers and only the authorized receiver can open the hiding message. This paper explores our proposed random method in detail, how chooses locations of pixel in randomly , how to choose a random bit to hide information in the chosen pixel, how it different from other approaches, how applying information hiding criteria on the proposed project, and attempts to test out in code, and
... Show MoreThis paper aims to propose a hybrid approach of two powerful methods, namely the differential transform and finite difference methods, to obtain the solution of the coupled Whitham-Broer-Kaup-Like equations which arises in shallow-water wave theory. The capability of the method to such problems is verified by taking different parameters and initial conditions. The numerical simulations are depicted in 2D and 3D graphs. It is shown that the used approach returns accurate solutions for this type of problems in comparison with the analytic ones.
This research aims to investigate the approaches adopted by Iraqi newspapers in addressing the COVID-19 pandemic crisis. Employing a descriptive methodology and survey technique, the study conducts content analysis on articles published in three prominent newspapers: Al-Sabah, Al-Mada, and Tareeq Al-Shaab. A multi-stage sampling method was employed, encompassing 260 issues of the aforementioned newspapers. Data collection involved the use of a content analysis questionnaire, with the "How it was said?" method utilized to determine analysis categories.
The results showed that Al-Sabah newspaper adopted a positive approach in addressing COVID-19-related topics, while Al-Mada newspaper remained neutral, and Tare
At the end of 2019, a new form of Coronavirus (later dubbed COVID-19) emerged in China and quickly spread to other regions of the globe. Despite the virus’s unique and unknown characteristics, it is a widely distributed infectious illness. Finding the geographical distribution of the virus transmission is therefore critical for epidemiologists and governments in order to respond to the illness epidemic rapidly and effectively. Understanding the dynamics of COVID-19’s spatial distribution can help to understand the pandemic’s scope and effects, as well as decision-making, planning, and community action aimed at preventing transmission. The main focus of this study is to investigate the geographic patterns of COVID-19 disseminat
... Show MoreThe analysis of COVID-19 data in Iraq is carried out. Data includes daily cases and deaths since the outbreak of the pandemic in Iraq on February 2020 until the 28th of June 2022. This is done by fitting some distributions to the data in order to find out the most appropriate distribution fit to both daily cases and deaths due to the COVID-19 pandemic. The statistical analysis includes estimation of the parameters, the goodness of fit tests and illustrative probability plots. It was found that the generalized extreme value and the generalized Pareto distributions may provide a good fit for the data for both daily cases and deaths. However, they were rejected by the goodness of fit test statistics due to the high variability of the data.<
... Show More