Preferred Language
Articles
/
SBb34osBVTCNdQwCQOOu
COVID-19 Diagnostics from the Chest X-Ray Image Using Corner-Based Weber Local Descriptor
...Show More Authors

Corona Virus Disease-2019 (COVID-19) is a novel virus belongs to the corona virus's family. It spreads very quickly and causes many deaths around the world. The early diagnosis of the disease can help in providing the proper therapy and saving the humans' life. However, it founded that the diagnosis of chest radiography can give an indicator of coronavirus. Thus, a Corner-based Weber Local Descriptor (CWLD) for COVID-19 diagnostics based on chest X-Ray image analysis is presented in this article. The histogram of Weber differential excitation and gradient orientation of the local regions surrounding points of interest are proposed to represent the patterns of the chest X-Ray image. Support Vector Machine (SVM) and Deep Belief Network (DBN) classifiers are utilized for CWLD classification. Experimental results on a real chest X-Ray database showed that the gradient orientation gives the desired accuracy which is 100% using DBN classifier and CWLD size equals to 400.

Scopus Crossref
View Publication
Publication Date
Sat Oct 31 2020
Journal Name
International Journal Of Intelligent Engineering And Systems
Automatic Computer Aided Diagnostic for COVID-19 Based on Chest X-Ray Image and Particle Swarm Intelligence
...Show More Authors

View Publication
Scopus (22)
Crossref (5)
Scopus Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Baghdad Science Journal
Diagnosing COVID-19 Infection in Chest X-Ray Images Using Neural Network
...Show More Authors

With its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques.  T

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Clarivate Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Diagnose COVID-19 by using hybrid CNN-RNN for Chest X-ray
...Show More Authors

<p>Combating the COVID-19 epidemic has emerged as one of the most promising healthcare the world's challenges have ever seen. COVID-19 cases must be accurately and quickly diagnosed to receive proper medical treatment and limit the pandemic. Imaging approaches for chest radiography have been proven in order to be more successful in detecting coronavirus than the (RT-PCR) approach. Transfer knowledge is more suited to categorize patterns in medical pictures since the number of available medical images is limited. This paper illustrates a convolutional neural network (CNN) and recurrent neural network (RNN) hybrid architecture for the diagnosis of COVID-19 from chest X-rays. The deep transfer methods used were VGG19, DenseNet121

... Show More
View Publication
Scopus (12)
Crossref (2)
Scopus Crossref
Publication Date
Tue May 30 2023
Journal Name
Iraqi Journal Of Science
Deep Convolutional Neural Network Architecture to Detect COVID-19 from Chest X-Ray Images
...Show More Authors

      Today, the world is living in a time of epidemic diseases that spread unnaturally and infect and kill millions of people worldwide. The COVID-19 virus, which is one of the most well-known epidemic diseases currently spreading, has killed more than six million people as of May 2022. The World Health Organization (WHO) declared the 2019 coronavirus disease (COVID-19) after an outbreak of SARS-CoV-2 infection. COVID-19 is a severe and potentially fatal respiratory disease caused by the SARS-CoV-2 virus, which was first noticed at the end of 2019 in Wuhan city. Artificial intelligence plays a meaningful role in analyzing medical images and giving accurate results that serve healthcare workers, especially X-ray images, which are co

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (6)
Scopus Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Baghdad Science Journal
Comparative Analysis of MFO, GWO and GSO for Classification of Covid-19 Chest X-Ray Images
...Show More Authors

Medical images play a crucial role in the classification of various diseases and conditions. One of the imaging modalities is X-rays which provide valuable visual information that helps in the identification and characterization of various medical conditions. Chest radiograph (CXR) images have long been used to examine and monitor numerous lung disorders, such as tuberculosis, pneumonia, atelectasis, and hernia. COVID-19 detection can be accomplished using CXR images as well. COVID-19, a virus that causes infections in the lungs and the airways of the upper respiratory tract, was first discovered in 2019 in Wuhan Province, China, and has since been thought to cause substantial airway damage, badly impacting the lungs of affected persons.

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Sun Jul 24 2022
Journal Name
Journal Of The Faculty Of Medicine Baghdad
Initial Chest X-ray scoring in the prediction of COVID-19 patients’ outcome in the United Arab Emirates
...Show More Authors

Background: The radiological scoring of severity and progression of lung abnormalities is of great value for clinicians to define the clinical management of COVID-19 patients.

Objectives: The purpose of this study is to implement the Brixia scoring tool to assess the pattern of lung involvement in patients with COVID-19 to help predict the severity of their clinical outcome, where the clinical outcome correlates to outpatient, inpatient and/or ICU admission.

Patients and Methods: We conducted a case series study at the Sheikh Khalifa Medical City Ajman (SKMCA), United Arab Emirates from 14 March to 30 October 2020. Patients’ medical records were reviewed and followed up f

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Jan 02 2023
Journal Name
International Journal Of Nonlinear Analysis And Applications
Diagnostic COVID-19 based on chest imaging of COVID-19: A survey
...Show More Authors

Publication Date
Wed Feb 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering
Classification of COVID-19 from CT chest images using Convolutional Wavelet Neural Network
...Show More Authors

<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol

... Show More
View Publication Preview PDF
Publication Date
Wed Feb 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Classification of COVID-19 from CT chest images using Convolutional Wavelet Neural Network
...Show More Authors

<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Wed Apr 01 2009
Journal Name
Journal Of The Faculty Of Medicine Baghdad
The Value of the chest X-Ray for diagnosing left ventricular Dysfunction
...Show More Authors

Background: The use of the chest x-ray measurements which includes the cardiothoracic ratio(C-T) and frontal area (FA) of the heart by the CXR are useful measures for primary assessment of the cardiac dysfunction.
Patients and Methods: A Prospective study was done from the 1st of January 2005 to the 1st of October in the same year on a 120 consecutive patients who have been admitted for coronary and L.V angiogram at IBN-AL-BITAR hospital. The C-T ratio and the frontal area were measured.
Results: The study comprised 120 subjects who were admitted for coronary and L.V angiogram for diagnostic reasons. 89subjects (74.2%) are male and 31subjects (25.8%) are female .17(14%) subjects have left ventricular d

... Show More
View Publication Preview PDF
Crossref (1)
Crossref