One of the most important methodologies in operations research (OR) is the linear programming problem (LPP). Many real-world problems can be turned into linear programming models (LPM), making this model an essential tool for today's financial, hotel, and industrial applications, among others. Fuzzy linear programming (FLP) issues are important in fuzzy modeling because they can express uncertainty in the real world. There are several ways to tackle fuzzy linear programming problems now available. An efficient method for FLP has been proposed in this research to find the best answer. This method is simple in structure and is based on crisp linear programming. To solve the fuzzy linear programming problem (FLPP), a new ranking function (RF) with the trapezoidal fuzzy number (TFN) is devised in this study. The fuzzy quantities are de-fuzzified by applying the proposed ranking function (RF) transformation to crisp value linear programming problems (LPP) in the objective function (OF). Then the simplex method (SM) is used to determine the best solution (BS). To demonstrate our findings, we provide a numerical example (NE).
A new type of the connected domination parameters called tadpole domination number of a graph is introduced. Tadpole domination number for some standard graphs is determined, and some bounds for this number are obtained. Additionally, a new graph, finite, simple, undirected and connected, is introduced named weaver graph. Tadpole domination is calculated for this graph with other families of graphs.
The Rivest–Shamir–Adleman (RSA) and the Diffie-Hellman (DH) key exchange are famous methods for encryption. These methods depended on selecting the primes p and q in order to be secure enough . This paper shows that the named methods used the primes which are found by some arithmetical function .In the other sense, no need to think about getting primes p and q and how they are secure enough, since the arithmetical function enable to build the primes in such complicated way to be secure. Moreover, this article gives new construction of the RSA algorithm and DH key exchange using the
primes p,qfrom areal number x.
Pandemic COVID-19 is a contagious disease affecting more than 200 countries, territories, and regions. Recently, Iraq is one of the countries that have immensely suffered from this outbreak. The Kurdistan Region of Iraq (KRI) is also prone to the disease. Until now, more than 23,000 confirmed cases have been recorded in the region. Since the onset of the COVID-19 in Wuhan, based on epidemiological modelling, researchers have used various models to predict the future of the epidemic and the time of peak, yielding diverse numbers in different countries. This study aims to estimate the basic reproductive number [R0] for COVID-19 in KRI, using the standard SIR (Susceptible-Infected-Removed) epidemic model. A system of non
... Show MoreIn the present work, the effect of the cylindrical configurations of the sputtering device electrodes on the plasma parameters (Debye length, electron temperature, electron density, plasma frequency) is studied. Also, the effect of the argon gas pressure on the discharge properties is examined with gas pressures of (0.08, 0.2, 0.4 and 0.6) Torr. The properties of the plasma are diagnosed by optical emission spectrometry. The spectroscopic method is adopted for examining the atomic spectra of argon emission. The electron temperature is determined by the Boltzmann method. While, the Stark-widening method was employed for calculating the electron number density. The voltage against current curves of the cylindrical sprayer disc
... Show MoreThe metric dimension and dominating set are the concept of graph theory that can be developed in terms of the concept and its application in graph operations. One of some concepts in graph theory that combine these two concepts is resolving dominating number. In this paper, the definition of resolving dominating number is presented again as the term dominant metric dimension. The aims of this paper are to find the dominant metric dimension of some special graphs and corona product graphs of the connected graphs and , for some special graphs . The dominant metric dimension of is denoted by and the dominant metric dimension of corona product graph G and H is denoted by .
The aim of this article is to introduce a new definition of domination number in graphs called hn-domination number denoted by . This paper presents some properties which show the concepts of connected and independent hn-domination. Furthermore, some bounds of these parameters are determined, specifically, the impact on hn-domination parameter is studied thoroughly in this paper when a graph is modified by deleting or adding a vertex or deleting an edge.
Let A ⊆ V(H) of any graph H, every node w of H be labeled using a set of numbers; , where d(w,v) denotes the distance between node w and the node v in H, known as its open A-distance pattern. A graph H is known as the open distance-pattern uniform (odpu)-graph, if there is a nonempty subset A ⊆V(H) together with is the same for all . Here is known as the open distance pattern uniform (odpu-) labeling of the graph H and A is known as an odpu-set of H. The minimum cardinality of vertices in any odpu-set of H, if it exists, will be known as the odpu-number of the graph H. This article gives a characterization of maximal outerplanar-odpu graphs. Also, it establishes that the possible odpu-number of an odpu-maximal outerplanar graph i
... Show MoreIt is so much noticeable that initialization of architectural parameters has a great impact on whole learnability stream so that knowing mathematical properties of dataset results in providing neural network architecture a better expressivity and capacity. In this paper, five random samples of the Volve field dataset were taken. Then a training set was specified and the persistent homology of the dataset was calculated to show impact of data complexity on selection of multilayer perceptron regressor (MLPR) architecture. By using the proposed method that provides a well-rounded strategy to compute data complexity. Our method is a compound algorithm composed of the t-SNE method, alpha-complexity algorithm, and a persistence barcod
... Show MoreRegression Discontinuity (RD) means a study that exposes a definite group to the effect of a treatment. The uniqueness of this design lies in classifying the study population into two groups based on a specific threshold limit or regression point, and this point is determined in advance according to the terms of the study and its requirements. Thus , thinking was focused on finding a solution to the issue of workers retirement and trying to propose a scenario to attract the idea of granting an end-of-service reward to fill the gap ( discontinuity point) if it had not been granted. The regression discontinuity method has been used to study and to estimate the effect of the end -service reward on the cutoff of insured workers as well as t
... Show MoreA flexible pavement structure usually comprises more than one asphalt layer, with varying thicknesses and properties, in order to carry the traffic smoothly and safely. It is easy to characterize each asphalt layer with different tests to give a full description of that layer; however, the performance of the whole; asphalt structure needs to be properly understood. Typically, pavement analysis is carried out using multi-layer linear elastic assumptions, via equations and computer programs such as KENPAVE, BISAR, etc. These types of analysis give the response parameters including stress, strain, and deflection at any point under the wheel load. This paper aims to estimate the equivalent Resilient Modulus (MR) of the asphalt concrete
... Show More