The brain's magnetic resonance imaging (MRI) is tasked with finding the pixels or voxels that establish where the brain is in a medical image The Convolutional Neural Network (CNN) can process curved baselines that frequently occur in scanned documents. Next, the lines are separated into characters. In the Convolutional Neural Network (CNN) can process curved baselines that frequently occur in scanned documents case of fonts with a fixed MRI width, the gaps are analyzed and split. Otherwise, a limited region above the baseline is analyzed, separated, and classified. The words with the lowest recognition score are split into further characters x until the result improves. If this does not improve the recognition score, contours are merged and classified again to check the change in the recognition score. The features for classification are extracted from small fixed-size patches over neighboring contours and matched against the trained deep learning representations this approach enables Tesseract to easily handle MRI sample results broken into multiple parts, which is impossible if each contour is processed separately Hard to read! Try to split sentences. The CNN inception network seem to be a suitable choice for the evaluation of the synthetic MRI samples with 3000 features, and 12000 samples of images as data augmentation capacities favors data which is similar to the original training set and thus unlikely to contain new information content with an accuracy of 98.68%. The error is only 1.32% with the increasing the number of training samples, but the most significant impact in reducing the error can be made by increasing the number of samples.
This paper argues the accuracy of behavior based detection systems, in which the Application Programming Interfaces (API) calls are analyzed and monitored. The work identifies the problems that affecting the accuracy of such detection models. The work was extracted (4744) API call through analyzing. The new approach provides an accurate discriminator and can reveal malicious API in PE malware up to 83.2%. Results of this work evaluated with Discriminant Analysis
The Next-generation networks, such as 5G and 6G, need capacity and requirements for low latency, and high dependability. According to experts, one of the most important features of (5 and 6) G networks is network slicing. To enhance the Quality of Service (QoS), network operators may now operate many instances on the same infrastructure due to configuring able slicing QoS. Each virtualized network resource, such as connection bandwidth, buffer size, and computing functions, may have a varied number of virtualized network resources. Because network resources are limited, virtual resources of the slices must be carefully coordinated to meet the different QoS requirements of users and services. These networks may be modifie
... Show MoreThe liver diseases can define as the tumor or disorder that can affect the liver and causes deformation in its shape. The early detection and diagnose of the tumor using CT medical images, helps the detector to specify the tumor perfectly. This search aims to detect and classify the liver tumor depending on the use of a computer (image processing and textural analysis) helps in getting an accurate diagnosis. The methods which are used in this search depend on creating a binary mask used to separate the liver from the origins of the other in the CT images. The threshold has been used as an early segmentation. A Process, the watershed process is used as a classification technique to isolate the tumor which is cancer and cyst.
 
... Show MoreAccording to the importance of the conveyor systems in various industrial and service lines, it is very desirable to make these systems as efficient as possible in their work. In this paper, the speed of a conveyor belt (which is in our study a part of an integrated training robotic system) is controlled using one of the artificial intelligence methods, which is the Artificial Neural Network (ANN). A visions sensor will be responsible for gathering information about the status of the conveyor belt and parts over it, where, according to this information, an intelligent decision about the belt speed will be taken by the ANN controller. ANN will control the alteration in speed in a way that gives the optimized energy efficiency through
... Show MoreMillions of lives might be saved if stained tissues could be detected quickly. Image classification algorithms may be used to detect the shape of cancerous cells, which is crucial in determining the severity of the disease. With the rapid advancement of digital technology, digital images now play a critical role in the current day, with rapid applications in the medical and visualization fields. Tissue segmentation in whole-slide photographs is a crucial task in digital pathology, as it is necessary for fast and accurate computer-aided diagnoses. When a tissue picture is stained with eosin and hematoxylin, precise tissue segmentation is especially important for a successful diagnosis. This kind of staining aids pathologists in disti
... Show MoreAerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d’A
... Show More