A computational investigation has been carried out to describe synthesis optimization procedure of magnetic lenses. The research is concentrated on the determination of the inverse design of the symmetrical double polepiece magnetic lenses whose magnetic field distribution is already defined. Magnetic lenses field model well known in electron optics have been used as the axial magnetic field distribution. This field has been studied when the halfwidth is variable and the maximum magnetic flux density is kept constant. The importance of this research lies in the possibility of using the present synthesis optimization procedure for finding the polepieces design of symmetrical double polepiece magnetic lenses which have the best projector focal properties.
Analytical field target function has been considered to represent the axial magnetic field distribution of double polepiece symmetric magnetic lens. In this article, with aid of the proposed target function, the syntheses procedure is dependent. The effect of the main two coffectin optimization parameters on the lens field distribution, polepieces shape, and the objective focal prosperities for lenses operated under zero magnification mode has been studied. The results have shown that the objective properties evaluated in sense of the inverse design procedure are in an excellent correspondence with that of analysis approach. Where the optical properties enhance as the field distribution of the electron lens distributed along a narrow axi
... Show MoreIn this theoretical paper and depending on the optimization synthesis method for electron magnetic lenses a theoretical computational investigation was carried out to calculate the Resolving Power for the symmetrical double pole piece magnetic lenses, under the absence of magnetic saturation, operated by the mode of telescopic operation by using symmetrical magnetic field for some analytical functions well-known in electron optics such as Glaser’s Bell-shaped model, Grivet-Lenz model, Gaussian field model and Hyperbolic tangent field model. This work can be extended further by using the same or other models for asymmetrical or symmetrical axial magnetic field
... Show MoreComputer Aided Designing Tools of Electron Lenses (CADTEL) is a software packages cares about design, compute and plot simultaneously of the objective and projector properties of electron magnetic lenses. The developments in CADTEL software leads to contain a large fields and methods, adding to previous publish in 2013. The current improvement is inserting of some important parameters which are the resolution and focusing parameters. These parameters are angular semi-angle (α), focusing power (β), resolution limit (δ), image rotation (θ), spherical aberration (Cs), defocus (ΔZ), wave aberration (Χwab), depth of field (Dfld), and depth of focus (Dfoc) a
... Show MoreCADTEL software was developed to provide the simplest and most versatile computing resource that a wide range of skilled researchers and designers can use. In this paper, a development on this program, relying on sixteen mathematical models, produced a new version of CADTEL software package which focuses on the optimum conditions of Scherzer imaging for round electron magnetic lenses.. These models depend on synthesis procedure which is mainly designed to work with the inverse design problem, and represent the axial magnetic flux density of desirable electron magnetic lens which can be proposed or selected , using the four (zero, low, high, infinite) magnification states. The p
... Show MoreA computational investigation is carried out in the field of charged particle optics with the aid of the numerical analysis methods. The work is concerned with the design of symmetrical double pole piece magnetic lens. The axial magnetic flux density distribution is determined by using exponential model, from which the paraxial-ray equation is solved to obtain the trajectory of particles that satisfy the suggested exponential model. From the knowledge of the first and second derivatives of axial potential distribution, the optical properties such as the focal length and aberration coefficients (radial distortion coefficient and spiral distortion coefficient) are determined. Finally, the pole piece profiles capable of pr
... Show MoreThe present research aims to study the efficiency of infrared material lenses compared with the glass material lenses by determining LSF and CLSF for perfect optical system having circular aperture, Arnorphous(1,2) material transmitting infrared radiation (AMTIR) is used for infrared window, lenses and prisms when transmission in the range of 1-14 pm is desired in application like thermal imaging, astronomical and forward looking infrared (FLIR), AMTIR is the low thermal change in refractive index 72 * 10-6 /C ° is an advantage in lenses design to prevent defocussing.
The preferable design for unsaturated symmetrical spherical
double-pole piece electron lens required good focal properties, and in this present study investigate effect of air gap wide (S) on the properties of the projector lens specialized the minimum projector
focal length 1Fr) . and the properties of the axial magnetic field
\ lnlll
distribution:(the maximum
... Show MoreAn optimization calculation is made to find the optimum properties of combined quadrupole lens which consists of electrostatic and magnetic lens. Both chromatic and spherical aberration coefficients are reduced to minimum values and the achromatic aberration is found for many cases. These calculations are achieved with the aid of transfer matrices method and using rectangular model of field distribution, where the path of charged-particles beam traversing the field has been determined by solving the trajectory equation of motion and then the optical properties for lens have been computed with the aid of the beam trajectory along the lens axis. The computations have been concentrated on determining the chromatic and spher
... Show MoreThe aim of this research is to study the surface alteration characteristics and surface morphology of the superhydrophobic/hydrophobic nanocomposite coatings prepared by an electrospinning method to coat various materials such as glass and metal. This is considered as a low cost method of fabrication for polymer solutions of Polystyrene (PS), Polymethylmethacrylate (PMMA) and Silicone Rubber (RTV). Si were prepared in various wt% of composition for each solutions. Contact angle measurement, surface tension, viscosity, roughness tests were calculated for all specimens. SEM showed the morphology of the surfaces after coated. PS and PMMA showed superhydrophobic properties for metal substrate, while Si showed hydroph
... Show MoreMany designs have been suggested for unipolar magnetic lenses based on changing the width of the inner bore and fixing the other geometrical parameters of the lens to improve the performance of unipolar magnetic lenses. The investigation of a study of each design included the calculation of its axial magnetic field the magnetization of the lens in addition to the magnetic flux density using the Finite Element Method (FEM) the Magnetic Electron Lenses Operation (MELOP) program version 1 at three different values of current density (6,4,2 A/mm2). As a result, the clearest values and behaviors were obtained at current density (2 A/mm2). it was found that the best magnetizing properties, the high
... Show More