In this paper, Bayes estimators for the shape and scale parameters of Weibull distribution have been obtained using the generalized weighted loss function, based on Exponential priors. Lindley’s approximation has been used effectively in Bayesian estimation. Based on theMonte Carlo simulation method, those estimators are compared depending on the mean squared errors (MSE’s).
In this paper, we used maximum likelihood method and the Bayesian method to estimate the shape parameter (θ), and reliability function (R(t)) of the Kumaraswamy distribution with two parameters l , θ (under assuming the exponential distribution, Chi-squared distribution and Erlang-2 type distribution as prior distributions), in addition to that we used method of moments for estimating the parameters of the prior distributions. Bayes
Most available methods for unit hydrographs (SUH) derivation involve manual, subjective fitting of
a hydrograph through a few data points. The use of probability distributions for the derivation of synthetic
hydrographs had received much attention because of its similarity with unit hydrograph properties. In this
paper, the use of two flexible probability distributions is presented. For each distribution the unknown
parameters were derived in terms of the time to peak(tp), and the peak discharge(Qp). A simple Matlab
program is prepared for calculating these parameters and their validity was checked using comparison
with field data. Application to field data shows that the gamma and lognormal distributions had fit well.<
This paper presents a statistical study for a suitable distribution of rainfall in the provinces of Iraq
Using two types of distributions for the period (2005-2015). The researcher suggested log normal distribution, Mixed exponential distribution of each rovince were tested with the distributions to determine the optimal distribution of rainfall in Iraq. The distribution will be selected on the basis of minimum standards produced some goodness of fit tests, which are to determine
Akaike (CAIC), Bayesian Akaike (BIC), Akaike (AIC). It has been applied to distributions to find the right distribution of the data of rainfall in the provinces of Iraq was used (maximu
... Show MoreIn the present paper, we will study the generalized ( p, q) -type and
generalized lower ( p, q) -type of an entire function in several complex
variables with respect to the proximate order with index pair ( p, q) are
defined and their coefficient characterizations are obtained.
Exponential distribution is one of most common distributions in studies and scientific researches with wide application in the fields of reliability, engineering and in analyzing survival function therefore the researcher has carried on extended studies in the characteristics of this distribution.
In this research, estimation of survival function for truncated exponential distribution in the maximum likelihood methods and Bayes first and second method, least square method and Jackknife dependent in the first place on the maximum likelihood method, then on Bayes first method then comparing then using simulation, thus to accomplish this task, different size samples have been adopted by the searcher us
... Show MoreIn the present paper, we will study the generalized ( p, q) -type and
generalized lower ( p, q) -type of an entire function in several complex
variables with respect to the proximate order with index pair ( p, q) are
defined and their coefficient characterizations are obtained.
This Research deals with estimation the reliability function for two-parameters Exponential distribution, using different estimation methods ; Maximum likelihood, Median-First Order Statistics, Ridge Regression, Modified Thompson-Type Shrinkage and Single Stage Shrinkage methods. Comparisons among the estimators were made using Monte Carlo Simulation based on statistical indicter mean squared error (MSE) conclude that the shrinkage method perform better than the other methods
In this paper, we present a comparison of double informative priors which are assumed for the parameter of inverted exponential distribution.To estimate the parameter of inverted exponential distribution by using Bayes estimation ,will be used two different kind of information in the Bayes estimation; two different priors have been selected for the parameter of inverted exponential distribution. Also assumed Chi-squared - Gamma distribution, Chi-squared - Erlang distribution, and- Gamma- Erlang distribution as double priors. The results are the derivations of these estimators under the squared error loss function with three different double priors.
Additionally Maximum likelihood estimation method
... Show MoreIn this paper, we derived an estimator of reliability function for Laplace distribution with two parameters using Bayes method with square error loss function, Jeffery’s formula and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived Bayesian estimator compared to the maximum likelihood of this function and moment method using simulation technique by Monte Carlo method under different Laplace distribution parameters and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator and moment estimator in all samples sizes