This article will introduce a new iteration method called the zenali iteration method for the approximation of fixed points. We show that our iteration process is faster than the current leading iterations like Mann, Ishikawa, oor, D- iterations, and *- iteration for new contraction mappings called quasi contraction mappings. And we proved that all these iterations (Mann, Ishikawa, oor, D- iterations and *- iteration) equivalent to approximate fixed points of quasi contraction. We support our analytic proof by a numerical example, data dependence result for contraction mappings type by employing zenali iteration also discussed.
Let R be a commutative ring with unity. In this paper we introduce and study the concept of strongly essentially quasi-Dedekind module as a generalization of essentially quasiDedekind module. A unitary R-module M is called a strongly essentially quasi-Dedekind module if ( , ) 0 Hom M N M for all semiessential submodules N of M. Where a submodule N of an R-module M is called semiessential if , 0  pN for all nonzero prime submodules P of M .
The DC electrical conductivity properties of Ge60Se40-xTex alloy with x = 0, 5, 10, 15 and 20). The samples were formed in the form of discs with the thickness of 0.25–0.30 cm and the diameter of 1.5 cm. Samples were pressed under a pressure of 6 tons per cm2 , using a ton hydraulic press. They were prepared after being pressed using a ton hydraulic press using a hydraulic press. Melting point technology use to preper the samples. Continuous electrical conductivity properties were recorded from room temperature to 475 K. Experimental data indicates that glass containing 15% Te has the highest electrical conductivity allowing maximum current through the sample compared to Lu with other samples. Therefore, it is found that the DC co
... Show MoreThis paper concerns is the preparation and characterization of a bidentate ligand [4-(5,5dimethyl-3-oxocyclohex-1-enylamino)-N-(5-methylisoxazol-3-yl) benzene sulfonamide]. The ligand was prepared from fusing of sulfamethoxazole and dimedone at (140) ºC for half hour. The complex was prepared by refluxing the ligand with a bivalent cobalt ion using ethanol as a solvent. The prepared ligand and complex were identified using Spectroscopic methods. The proposed tetrahedral geometry around the metal ions studied were concluded from these measurements. Both molar ratio and continuous variation method were studied to determine metal to ligand ratio (M:L). The M to L ratio wa
... Show MoreThe objective of this paper is, first, study a new collection of sets such as field and we discuss the properties of this collection. Second, introduce a new concepts related to the field such as measure on field, outer measure on field and we obtain some important results deals with these concepts. Third, introduce the concept of null-additive on field as a generalization of the concept of measure on field. Furthermore, we establish new concept related to - field noted by weakly null-additive on field as a generalizations of the concepts of measure on and null-additive. Finally, we introduce the restriction of a set function on field and many of its properties and characterizations are given.
In this paper, we shall introduce a new kind of Perfect (or proper) Mappings, namely ω-Perfect Mappings, which are strictly weaker than perfect mappings. And the following are the main results: (a) Let f : X→Y be ω-perfect mapping of a space X onto a space Y, then X is compact (Lindeloff), if Y is so. (b) Let f : X→Y be ω-perfect mapping of a regular space X onto a space Y. then X is paracompact (strongly paracompact), if Y is so paracompact (strongly paracompact). (c) Let X be a compact space and Y be a p*-space then the projection p : X×Y→Y is a ω-perfect mapping. Hence, X×Y is compact (paracompact, strongly paracompact) if and only if Y is so.
In this paper, we will introduce and study the concept of nano perfect mappings by using the definition of nano continuous mapping and nano closed mapping, study the relationship between them, and discuss them with many related theories and results. The k-space and its relationship with nano-perfect mapping are also defined.
Abstract. Nano-continuous mappings have a wide range of applications in pure and applied sciences. This paper aims to study and investigate new types of mappings, namely nano-para-compact, completely nano-regular, nano-para-perfect, and countably nano-para-perfect mappings in nano-topological spaces using nano-open sets. We introduce several properties and basic characterizations related to these mappings, which are essential for proving our main results. Additionally, we discuss the relationships among these types of mappings in nano-topological spaces. We also introduce the concept of nano-Ti-mapping, where i = 0, 1, 2, nano-neighborhood separated, and nano-functionally separated, along with various other definitions. We explore the relat
... Show MoreIn this paper the concepts of weakly (resp., closure, strongly) Perfect Mappings are defined and the important relationships are studied: (a) Comparison between deferent forms of perfect mappings. (b) Relationship between compositions of deferent forms of perfect mappings. (c) Investigate relationships between deferent forms of perfect mappings and their graphs mappings.
Ciprofloxacin (Cip) and hydrocortisone (Hyd) were simultaneously measured as hydrochloride and sodium succinate, respectively, using the H-point standard addition method (HPSAM). The approach can precisely identify Cip in the presence of Hyd with various analyte-to-interference ratios (5:5, 5:10, 10:5, 10:10) µg.mL-1, in mixed samples containing (1-5µg.ml-1) of Cip, at the wavelengths of (236 and 257) nm. In the same way, Hyd was analyzed in the presence of Cip in different analytes with an interference ratio of (5:5, 5:10, 10:5, 10:10) µg.mL-1, in mixed samples containing (1-5 µg.mL-1) of Hyd, at wavelengths of (266 and 278) nm. The satisfactory results show good reproducibility of the dev
... Show MoreIn this paper, we introduce and study the notation of approximaitly quasi-primary submodules of a unitary left -module over a commutative ring with identity. This concept is a generalization of prime and primary submodules, where a proper submodule of an -module is called an approximaitly quasi-primary (for short App-qp) submodule of , if , for , , implies that either or , for some . Many basic properties, examples and characterizations of this concept are introduced.