In this paper, we studied the scheduling of jobs on a single machine. Each of n jobs is to be processed without interruption and becomes available for processing at time zero. The objective is to find a processing order of the jobs, minimizing the sum of maximum earliness and maximum tardiness. This problem is to minimize the earliness and tardiness values, so this model is equivalent to the just-in-time production system. Our lower bound depended on the decomposition of the problem into two subprograms. We presented a novel heuristic approach to find a near-optimal solution for the problem. This approach depends on finding efficient solutions for two problems. The first problem is minimizing total completion time and maximum tardiness. The second is minimizing total completion time and maximum earliness. We used these efficient solutions to find a near-optimal solution for another problem which is a sum of maximum earliness and maximum tardiness. This means we eliminate the total completion time from the two problems. The algorithm was tested on a set of problems of different n. Computational results demonstrate the efficiency of the proposed method.
Meerkat Clan Algorithm (MCA) that is a swarm intelligence algorithm resulting from watchful observation of the Meerkat (Suricata suricatta) in the Kalahari Desert in southern Africa. Meerkat has some behaviour. Sentry, foraging, and baby-sitter are the behaviour used to build this algorithm through dividing the solution sets into two sets, all the operations are performed on the foraging set. The sentry presents the best solution. The Flexible Job Shop Scheduling Problem (FJSSP) is vital in the two fields of generation administration and combinatorial advancement. In any case, it is very hard to accomplish an ideal answer for this problem with customary streamlining approaches attributable to the high computational unpredictability. Most
... Show MoreAchieving energy-efficient Wireless Sensor Network (WSN) that monitors all targets at
all times is an essential challenge facing many large-scale surveillance applications.Singleobjective
set cover problem (SCP) is a well-known NP-hard optimization problem used to
set a minimum set of active sensors that efficiently cover all the targeted area. Realizing
that designing energy-efficient WSN and providing reliable coverage are in conflict with
each other, a multi-objective optimization tool is a strong choice for providing a set of
approximate Pareto optimal solutions (i.e., Pareto Front) that come up with tradeoff
between these two objectives. Thus, in the context of WSNs design problem, our main
contribution is to
Most Internet of Vehicles (IoV) applications are delay-sensitive and require resources for data storage and tasks processing, which is very difficult to afford by vehicles. Such tasks are often offloaded to more powerful entities, like cloud and fog servers. Fog computing is decentralized infrastructure located between data source and cloud, supplies several benefits that make it a non-frivolous extension of the cloud. The high volume data which is generated by vehicles’ sensors and also the limited computation capabilities of vehicles have imposed several challenges on VANETs systems. Therefore, VANETs is integrated with fog computing to form a paradigm namely Vehicular Fog Computing (VFC) which provide low-latency services to mo
... Show MoreThe fuzzy sets theory has been applied in many fields, such as operations research, control theory and management sciences, etc. In particular, an application of this theory in decision making problem is linear programming problems with fuzzy technological coefficients numbers, as well as studying the parametric linear programming problems in the case of changes in the objective function. In this paper presenting a new procedure which connects and makes link between fuzzy linear programming problem with fuzzy technological coefficients numbers and parametric linear programming problem with change in coefficients of the objective function, then develop a numerical example illustrates the steps of solution to this kind of problems.
This paper presents a new transform method to solve partial differential equations, for finding suitable accurate solutions in a wider domain. It can be used to solve the problems without resorting to the frequency domain. The new transform is combined with the homotopy perturbation method in order to solve three dimensional second order partial differential equations with initial condition, and the convergence of the solution to the exact form is proved. The implementation of the suggested method demonstrates the usefulness in finding exact solutions. The practical implications show the effectiveness of approach and it is easily implemented in finding exact solutions.
Finally, all algori
... Show MoreDue to its importance in physics and applied mathematics, the non-linear Sturm-Liouville problems
witnessed massive attention since 1960. A powerful Mathematical technique called the Newton-Kantorovich
method is applied in this work to one of the non-linear Sturm-Liouville problems. To the best of the authors’
knowledge, this technique of Newton-Kantorovich has never been applied before to solve the non-linear
Sturm-Liouville problems under consideration. Accordingly, the purpose of this work is to show that this
important specific kind of non-linear Sturm-Liouville differential equations problems can be solved by
applying the well-known Newton-Kantorovich method. Also, to show the efficiency of appl
Metaheuristic is one of the most well-known fields of research used to find optimum solutions for non-deterministic polynomial hard (NP-hard) problems, for which it is difficult to find an optimal solution in a polynomial time. This paper introduces the metaheuristic-based algorithms and their classifications and non-deterministic polynomial hard problems. It also compares the performance of two metaheuristic-based algorithms (Elephant Herding Optimization algorithm and Tabu Search) to solve the Traveling Salesman Problem (TSP), which is one of the most known non-deterministic polynomial hard problems and widely used in the performance evaluations for different metaheuristics-based optimization algorithms. The experimental results of Ele
... Show More