In this paper, a new procedure is introduced to estimate the solution for the three-point boundary value problem which is instituted on the use of Morgan-Voyce polynomial. In the beginning, Morgan-Voyce polynomial along with their important properties is introduced. Next, this polynomial with aid of the collocation method utilized to modify the differential equation with boundary conditions to the algebraic system. Finally, the examples approve the validity and accuracy of the proposed method.
The main objective of this work is to introduce and investigate fixed point (F. p) theorems for maps that satisfy contractive conditions in weak partial metric spaces (W.P.M.S), and give some new generalization of the fixed point theorems of Mathews and Heckmann. Our results extend, and unify a multitude of (F. p) theorems and generalize some results in (W.P.M.S). An example is given as an illustration of our results.
This study attempts to provide an approach analysis for the news, depending on the bases and principles which conceptuality semiotic researchers of this field first of them «A. J. Gremas» for the theory of «narrative discourse analysis», to more clarify we tried to apply it on a published press- news, to concludes the most important steps and methods that are necessary to follows gain more understanding of the press- news.
Given a matrix, the Consecutive Ones Submatrix (C1S) problem which aims to find the permutation of columns that maximizes the number of columns having together only one block of consecutive ones in each row is considered here. A heuristic approach will be suggested to solve the problem. Also, the Consecutive Blocks Minimization (CBM) problem which is related to the consecutive ones submatrix will be considered. The new procedure is proposed to improve the column insertion approach. Then real world and random matrices from the set covering problem will be evaluated and computational results will be highlighted.
In this paper, we characterize normal composition operators induced by holomorphic self-map , when and .Moreover, we study other related classes of operators, and then we generalize these results to polynomials of degree n.
This paper includes the application of Queuing theory with of Particle swarm algorithm or is called (Intelligence swarm) to solve the problem of The queues and developed for General commission for taxes /branch Karkh center in the service stage of the Department of calculators composed of six employees , and it was chosen queuing model is a single-service channel M / M / 1 according to the nature of the circuit work mentioned above and it will be divided according to the letters system for each employee, and it was composed of data collection times (arrival time , service time, departure time)
... Show More
In this work, Elzaki transform (ET) introduced by Tarig Elzaki is applied to solve linear Volterra fractional integro-differential equations (LVFIDE). The fractional derivative is considered in the Riemman-Liouville sense. The procedure is based on the application of (ET) to (LVFIDE) and using properties of (ET) and its inverse. Finally, some examples are solved to show that this is computationally efficient and accurate.
In this work, Elzaki transform (ET) introduced by Tarig Elzaki is applied to solve linear Volterra fractional integro-differential equations (LVFIDE). The fractional derivative is considered in the Riemman-Liouville sense. The procedure is based on the application of (ET) to (LVFIDE) and using properties of (ET) and its inverse. Finally, some examples are solved to show that this is computationally efficient and accurate.
Futsal and blind football are group games of a competitive nature due to their excitement, excitement, fun, and aesthetic goals with charming artistic touches. This explains the public's passion for these two games, whether healthy people or blind people play them, to expand their vision and knowledge. About these two games, a historical approach is presented about their origins, development, and how they became globally recognized competitive sports with unified rules and world championships at various levels. Studying the origin and global spread of both futsal and blind football and identifying the most prominent developments in the rules and tools for futsal and blind football. The most important findings were that both futsal and footb
... Show More