In this article, unless otherwise established, all rings are commutative with identity and all modules are unitary left R-module. We offer this concept of WN-prime as new generalization of weakly prime submodules. Some basic properties of weakly nearly prime submodules are given. Many characterizations, examples of this concept are stablished.
Let R be a commutative ring with identity and let M be a unital left R-module.
A.Tercan introduced the following concept.An R-module M is called a CLSmodule
if every y-closed submodule is a direct summand .The main purpose of this
work is to develop the properties of y-closed submodules.
In this paper, we introduce the concept of e-small Projective modules as a generlization of Projective modules.
Throughout this note, R is commutative ring with identity and M is a unitary R-module. In this paper, we introduce the concept of quasi J- submodules as a – and give some of its basic properties. Using this concept, we define the class of quasi J-regular modules, where an R-module J- module if every submodule of is quasi J-pure. Many results about this concept
An R-module M is called a 2-regular module if every submodule N of M is 2-pure submodule, where a submodule N of M is 2-pure in M if for every ideal I of R, I2MN = I2N, [1]. This paper is a continuation of [1]. We give some conditions to characterize this class of modules, also many relationships with other related concepts are introduced.
Let be a ring with 1 and D is a left module over . In this paper, we study the relationship between essentially small quasi-Dedekind modules with scalar and multiplication modules. We show that if D is a scalar small quasi-prime -module, thus D is an essentially small quasi-Dedekind -module. We also show that if D is a faithful multiplication -module, then D is an essentially small prime -module iff is an essentially small quasi-Dedekind ring.
In this paper we give many connections between essentially quasi-Dedekind (quasi-
Dedekind) modules and other modules such that Baer modules, retractable modules,
essentially retractable modules, compressible modules and essentially compressible
modules where an R-module M is called essentially quasi-Dedekind (resp. quasi-
Dedekind) if, Hom(M N ,M ) 0 for all N ≤e M (resp. N ≤ M). Equivalently, a
module M is essentially quasi-Dedekind (resp. quasi-Dedekind) if, for each
f End (M) R , Kerf ≤ e M implies f = 0 (resp. f 0 implies ker f 0 ).
Let be a ring with identity and let be a left R-module. If is a proper submodule of and , is called --semi regular element in , If there exists a decoposition such that is projective submodule of and . The aim of this paper is to introduce properties of F-J-semi regular module. In particular, its characterizations are given. Furthermore, we introduce the concepts of Jacobson hollow semi regular module and --semiregular module. Finally, many results of Jacobson hollow semi regular module and --semiregular module are presented.
Let be a right module over an arbitrary ring with identity and . In this work, the coclosed rickart modules as a generalization of rickart modules is given. We say a module over coclosed rickart if for each , is a coclosed submodule of . Basic results over this paper are introduced and connections between these modules and otherwise notions are investigated.
In this article, we study the notion of closed Rickart modules. A right R-module M is said to be closed Rickart if, for each , is a closed submodule of M. Closed Rickart modules is a proper generalization of Rickart modules. Many properties of closed Rickart modules are investigated. Also, we provide some characterizations of closed Rickart modules. A necessary and sufficient condition is provided to ensure that this property is preserved under direct sums. Several connections between closed Rickart modules and other classes of modules are given. It is shown that every closed Rickart module is -nonsingular module. Examples which delineate this concept and some results are provided.
he concept of small monoform module was introduced by Hadi and Marhun, where a module U is called small monoform if for each non-zero submodule V of U and for every non-zero homomorphism f ∈ Hom R (V, U), implies that ker f is small submodule of V. In this paper the author dualizes this concept; she calls it co-small monoform module. Many fundamental properties of co-small monoform module are given. Partial characterization of co-small monoform module is established. Also, the author dualizes the concept of small quasi-Dedekind modules which given by Hadi and Ghawi. She show that co-small monoform is contained properly in the class of the dual of small quasi-Dedekind modules. Furthermore, some subclasses of co-small monoform are investiga
... Show More