In this research, our aim is to study the optimal control problem (OCP) for triple nonlinear elliptic boundary value problem (TNLEBVP). The Mint-Browder theorem is used to prove the existence and uniqueness theorem of the solution of the state vector for fixed control vector. The existence theorem for the triple continuous classical optimal control vector (TCCOCV) related to the TNLEBVP is also proved. After studying the existence of a unique solution for the triple adjoint equations (TAEqs) related to the triple of the state equations, we derive The Fréchet derivative (FD) of the cost function using Hamiltonian function. Then the theorems of necessity conditions and the sufficient condition for optimality of the constraints problem are proved
In this paper a nonlinear adaptive control method is presented for a pH process, which is difficult to control due to the nonlinear and uncertainties. A theoretical and experimental investigation was conducted of the dynamic behavior of neutralization process in a continuous stirred tank reactor (CSTR). The process control was implemented using different control strategies, velocity form of PI control and nonlinear adaptive control. Through simulation studies it has been shown that the estimated parameters are in good agreement with the actual values and that the proposed adaptive controller has excellent tracking and regulation performance.
In this article, a continuous terminal sliding mode control algorithm is proposed for servo motor systems. A novel full-order terminal sliding mode surface is proposed based on the bilimit homogeneous property, such that the sliding motion is finite-time stable independent of the system’s initial condition. A new continuous terminal sliding mode control algorithm is proposed to guarantee that the system states reach the sliding surface in finitetime. Not only the robustness is guaranteed by the proposed controller but also the continuity makes the control algorithm more suitable for the servo mechanical systems. Finally, a numerical example is presented to depict the advantages of the proposed control algorithm. An application in the rota
... Show MoreThis paper is concerned with finding solutions to free-boundary inverse coefficient problems. Mathematically, we handle a one-dimensional non-homogeneous heat equation subject to initial and boundary conditions as well as non-localized integral observations of zeroth and first-order heat momentum. The direct problem is solved for the temperature distribution and the non-localized integral measurements using the Crank–Nicolson finite difference method. The inverse problem is solved by simultaneously finding the temperature distribution, the time-dependent free-boundary function indicating the location of the moving interface, and the time-wise thermal diffusivity or advection velocities. We reformulate the inverse problem as a non-
... Show MoreThe aim of this paper is to study the nonlinear delay second order eigenvalue problems which consists of delay ordinary differential equations, in fact one of the expansion methods that is called the least square method which will be developed to solve this kind of problems.
Abstract
This research presents a on-line cognitive tuning control algorithm for the nonlinear controller of path-tracking for dynamic wheeled mobile robot to stabilize and follow a continuous reference path with minimum tracking pose error. The goal of the proposed structure of a hybrid (Bees-PSO) algorithm is to find and tune the values of the control gains of the nonlinear (neural and back-stepping method) controllers as a simple on-line with fast tuning techniques in order to obtain the best torques actions of the wheels for the cart mobile robot from the proposed two controllers. Simulation results (Matlab Package 2012a) show that the nonlinear neural controller with hybrid Bees-PSO cognitive algorithm is m
... Show More