Let R be a commutative ring , the pseudo – von neuman regular graph of the ring R is define as a graph whose vertex set consists of all elements of R and any two distinct vertices a and b are adjacent if and only if , this graph denoted by P-VG(R) , in this work we got some new results a bout chromatic number of P-VG(R).
The concept of the order sum graph associated with a finite group based on the order of the group and order of group elements is introduced. Some of the properties and characteristics such as size, chromatic number, domination number, diameter, circumference, independence number, clique number, vertex connectivity, spectra, and Laplacian spectra of the order sum graph are determined. Characterizations of the order sum graph to be complete, perfect, etc. are also obtained.
In this paper mildly-regular topological space was introduced via the concept of mildly g-open sets. Many properties of mildly - regular space are investigated and the interactions between mildly-regular space and certain types of topological spaces are considered. Also the concept of strong mildly-regular space was introduced and a main theorem on this space was proved.
Let
Throughout this note, R is commutative ring with identity and M is a unitary R-module. In this paper, we introduce the concept of quasi J- submodules as a – and give some of its basic properties. Using this concept, we define the class of quasi J-regular modules, where an R-module J- module if every submodule of is quasi J-pure. Many results about this concept
We introduce in this paper the concept of an approximately pure submodule as a generalization of a pure submodule, that is defined by Anderson and Fuller. If every submodule of an R-module is approximately pure, then is called F-approximately regular. Further, many results about this concept are given.
An R-module M is called a 2-regular module if every submodule N of M is 2-pure submodule, where a submodule N of M is 2-pure in M if for every ideal I of R, I2MN = I2N, [1]. This paper is a continuation of [1]. We give some conditions to characterize this class of modules, also many relationships with other related concepts are introduced.
This paper introduce two types of edge degrees (line degree and near line degree) and total edge degrees (total line degree and total near line degree) of an edge in a fuzzy semigraph, where a fuzzy semigraph is defined as (V, σ, μ, η) defined on a semigraph G* in which σ : V → [0, 1], μ : VxV → [0, 1] and η : X → [0, 1] satisfy the conditions that for all the vertices u, v in the vertex set, μ(u, v) ≤ σ(u) ᴧ σ(v) and η(e) = μ(u1, u2) ᴧ μ(u2, u3) ᴧ … ᴧ μ(un-1, un) ≤ σ(u1) ᴧ σ(un), if e = (u1, u2, …, un), n ≥ 2 is an edge in the semigraph G
... Show MoreSuppose that is a finite group and is a non-empty subset of such that and . Suppose that is the Cayley graph whose vertices are all elements of and two vertices and are adjacent if and only if . In this paper, we introduce the generalized Cayley graph denoted by that is a graph with vertex set consists of all column matrices which all components are in and two vertices and are adjacent if and only if , where is a column matrix that each entry is the inverse of similar entry of and is matrix with all entries in , is the transpose of and . In this paper, we clarify some basic properties of the new graph and assign the structure of when is complete graph , complete bipartite graph and complete
... Show MoreDie Forschung besteht aus zwei Kapiteln: das erste Kapitel geht es nur um die Form des Gedichts, aber das zweite Kapitel geht es um die Analyse des Gedichts, und das ist das Wesen der Arbeit, gleichzeitig enthält das zweite Kapitel auch zwei wichtige Disziplinen.
Die erste Disziplin handelt es sich um die Struktur des Gedichts, nämlich die lyrische Seite; Reim,Rhythmus,Strophe,und Versmaße, aber die zweite Disziplin handelt es sich um den Inhalt, erklärt hier sowohl das Wesen als auch das Ziel des Gedichts, denn das Gedicht besteht aus vier Strophen, die miteinander zu sehr nicht getrennt sind.
Der Dichter beschreibt in erster Strophe die Beziehung zwischen einem Paar, das genau acht Jahre zusammen gelebt hat. Die bei
... Show MoreForm the series of generalization of the topic of supra topology is the generalization of separation axioms . In this paper we have been introduced (S * - SS *) regular spaces . Most of the properties of both spaces have been investigated and reinforced with examples . In the last part we presented the notations of supra *- -space ( =0,1) and we studied their relationship with (S * - SS *) regular spaces.