Let R be a commutative ring , the pseudo – von neuman regular graph of the ring R is define as a graph whose vertex set consists of all elements of R and any two distinct vertices a and b are adjacent if and only if , this graph denoted by P-VG(R) , in this work we got some new results a bout chromatic number of P-VG(R).
Let M be a n-dimensional manifold. A C1- map f : M M is called transversal if for all m N the graph of fm intersect transversally the diagonal of MM at each point (x,x) such that x is fixed point of fm. We study the minimal set of periods of f(M per (f)), where M has the same homology of the complex projective space and the real projective space. For maps of degree one we study the more general case of (M per (f)) for the class of continuous self-maps, where M has the same homology of the n-dimensional sphere.
Let R be a Г-ring, and σ, τ be two automorphisms of R. An additive mapping d from a Γ-ring R into itself is called a (σ,τ)-derivation on R if d(aαb) = d(a)α σ(b) + τ(a)αd(b), holds for all a,b ∈R and α∈Γ. d is called strong commutativity preserving (SCP) on R if [d(a), d(b)]α = [a,b]α(σ,τ) holds for all a,b∈R and α∈Γ. In this paper, we investigate the commutativity of R by the strong commutativity preserving (σ,τ)-derivation d satisfied some properties, when R is prime and semi prime Г-ring.
Theoretical study computerized has been carried out in field electron optics , to design electrostatic unipotential lens , the inverse problem is important method in the design of electrostatic lenses by suggesting an axial electrostatic potential distribution using polynomial function. The paraxial –ray equation is solved to obtain the trajectory particles that satisfy the suggested potential function. In this research , design electrostatic unipotential lens three-electrode accelerating and decelerating L=5 mm operated under finite and infinite magnification conditions. The electrode shape of the electrostatic lens was then determined from the solution of the Laplace's equation's. the results showed low values of spherica
... Show MoreIn this ˑwork, we present theˑ notion of the ˑgraph for a KU-semigroup as theˑundirected simple graphˑ with the vertices are the elementsˑ of and weˑˑstudy the ˑgraph ofˑ equivalence classesˑofˑ which is determinedˑ by theˑ definition equivalenceˑ relation ofˑ these verticesˑ, andˑ then some related ˑproperties areˑ given. Several examples are presented and some theorems are proved. Byˑ usingˑ the definitionˑ ofˑ isomorphicˑ graph, ˑwe showˑ thatˑ the graphˑ of equivalence ˑclasses ˑand the ˑgraphˑof ˑa KU-semigroup ˑ areˑ theˑ sameˑ,
... Show MoreF index is a connected graph, sum of the cubes of the vertex degrees. The forgotten topological index has been designed to be employed in the examination of drug molecular structures, which is extremely useful for pharmaceutical and medical experts in understanding the biological activities. Among all the topological indices, the forgotten index is based on degree connectivity on bonds. This paper characterized the forgotten index of union of graphs, join graphs, limits on trees and its complements, and accuracy is measured. Co-index values are analyzed for the various molecular structure of chemical compounds
The restriction concept is a basic feature in the field of measure theory and has many important properties. This article introduces the notion of restriction of a non-empty class of subset of the power set on a nonempty subset of a universal set. Characterization and examples of the proposed concept are given, and several properties of restriction are investigated. Furthermore, the relation between the P*–field and the restriction of the P*–field is studied, explaining that the restriction of the P*–field is a P*–field too. In addition, it has been shown that the restriction of the P*–field is not necessarily contained in the P*–field, and the converse is true. We provide a necessary condition for the P*–field to obtain th
... Show MoreThe purpose of this paper is to prove the following result: Let R be a 2-torsion free ring and T: R?R an additive mapping such that T is left (right) Jordan ?-centralizers on R. Then T is a left (right) ?-centralizer of R, if one of the following conditions hold (i) R is a semiprime ring has a commutator which is not a zero divisor . (ii) R is a non commutative prime ring . (iii) R is a commutative semiprime ring, where ? be surjective endomorphism of R . It is also proved that if T(x?y)=T(x)??(y)=?(x)?T(y) for all x, y ? R and ?-centralizers of R coincide under same condition and ?(Z(R)) = Z(R) .
This paper discusses the Sums of Squares of “m” consecutive Woodall Numbers. These discussions are made from the definition of Woodall numbers. Also learn the comparability of Woodall numbers and other special numbers. An attempt to communicate the formula for the sums of squares of ‘m’ Woodall numbers and its matrix form are discussed. Further, this study expresses some more correlations between Woodall numbers and other special numbers.
A new type of the connected domination parameters called tadpole domination number of a graph is introduced. Tadpole domination number for some standard graphs is determined, and some bounds for this number are obtained. Additionally, a new graph, finite, simple, undirected and connected, is introduced named weaver graph. Tadpole domination is calculated for this graph with other families of graphs.
The aim of this article is to introduce a new definition of domination number in graphs called hn-domination number denoted by . This paper presents some properties which show the concepts of connected and independent hn-domination. Furthermore, some bounds of these parameters are determined, specifically, the impact on hn-domination parameter is studied thoroughly in this paper when a graph is modified by deleting or adding a vertex or deleting an edge.