An Alternating Directions Implicit method is presented to solve the homogeneous heat diffusion equation when the governing equation is a bi-harmonic equation (X) based on Alternative Direction Implicit (ADI). Numerical results are compared with other results obtained by other numerical (explicit and implicit) methods. We apply these methods it two examples (X): the first one, we apply explicit when the temperature .
Theoretical and experimental investigations of the transient heat transfer parameters of constant heat flux source subjected to water flowing in the downward direction in closed channel are conducted. The power increase transient is ensured by step change increase in the heat source power. The theoretical investigation involved a mathematical modeling for axially symmetric, simultaneously developing laminar water flow in a vertical annulus. The mathematical model is based on one dimensional downward flow. The boundary conditions of the studied case are based on adiabatic outer wall, while the inner wall is subjected to a constant heat flux. The heat & mass balance equation derived for specified element of bulk water within the annulu
... Show MoreIn this study, the first kind Bessel function was used to solve Kepler equation for an elliptical orbiting satellite. It is a classical method that gives a direct solution for calculation of the eccentric anomaly. It was solved for one period from (M=0-360)° with an eccentricity of (e=0-1) and the number of terms from (N=1-10). Also, the error in the representation of the first kind Bessel function was calculated. The results indicated that for eccentricity of (0.1-0.4) and (N = 1-10), the values of eccentric anomaly gave a good result as compared with the exact solution. Besides, the obtained eccentric anomaly values were unaffected by increasing the number of terms (N = 6-10) for eccentricities (0.8 and 0.9). The Bessel
... Show MoreOur aim of this research is to find the results of numerical solution of Volterra linear integral equation of the second kind using numerical methods such that Trapezoidal and Simpson's rule. That is to derive some statistical properties expected value, the variance and the correlation coefficient between the numerical and exact solutionâ–¡
In this paper, Min-Max composition fuzzy relation equation are studied. This study is a generalization of the works of Ohsato and Sekigushi. The conditions for the existence of solutions are studied, then the resolution of equations is discussed.
A remarkable correlation between chaotic systems and cryptography has been established with sensitivity to initial states, unpredictability, and complex behaviors. In one development, stages of a chaotic stream cipher are applied to a discrete chaotic dynamic system for the generation of pseudorandom bits. Some of these generators are based on 1D chaotic map and others on 2D ones. In the current study, a pseudorandom bit generator (PRBG) based on a new 2D chaotic logistic map is proposed that runs side-by-side and commences from random independent initial states. The structure of the proposed model consists of the three components of a mouse input device, the proposed 2D chaotic system, and an initial permutation (IP) table. Statist
... Show MoreThe research aimed to modeling a structural equation for tourist attraction factors in Asir Region. The research population is the people in the region, and a simple random sample of 332 individuals were selected. The factor analysis as a reliable statistical method in this phenomenon was used to modeling and testing the structural model of tourism, and analyzing the data by using SPSS and AMOS statistical computerized programs. The study reached a number of results, the most important of them are: the tourist attraction factors model consists of five factors which explain 69.3% of the total variance. These are: the provision of tourist services, social and historic factors, mountains, weather and natural parks. And the differenc
... Show MoreTransformation and many other substitution methods have been used to solve non-linear differential fractional equations. In this present work, the homotopy perturbation method to solve the non-linear differential fractional equation with the help of He’s Polynomials is provided as the transformation plays an essential role in solving differential linear and non-linear equations. Here is the α-Sumudu technique to find the relevant results of the gas dynamics equation in fractional order. To calculate the non-linear fractional gas dynamical problem, a consumer method created on the new homotopy perturbation a-Sumudu transformation method (HP TM) is suggested. In the Caputo type, the derivative is evaluated. a-Sumudu homotopy pe
... Show More