Preferred Language
Articles
/
jih-219
Purely Goldie Extending Modules
...Show More Authors

An -module  is extending if every submodule of   is essential in a direct summand of . Following Clark, an -module  is purely extending if every submodule of   is essential in a pure submodule of . It is clear purely extending is generalization of extending modules. Following Birkenmeier and Tercan, an -module     is Goldie extending if, for each submodule      of , there is a direct summand D of such that . In this paper, we introduce and study class of modules which are proper generalization of both the purely extending modules and -extending modules. We call an -module  is purely Goldie extending if, for each , there is a pure submodule P of such that  . Many characterizations and properties of purely Goldie extending modules are given. Also, we discuss when a direct sum of purely Goldie extending modules is purely Goldie extending and moreover we give a sufficient condition to make this property of purely  Goldie extending modules is valid. 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Mar 02 2014
Journal Name
Baghdad Science Journal
On Strongly F – Regular Modules and Strongly Pure Intersection Property
...Show More Authors

A submoduleA of amodule M is said to be strongly pure , if for each finite subset {ai} in A , (equivalently, for each a ?A) there exists ahomomorphism f : M ?A such that f(ai) = ai, ?i(f(a)=a).A module M is said to be strongly F–regular if each submodule of M is strongly pure .The main purpose of this paper is to develop the properties of strongly F–regular modules and study modules with the property that the intersection of any two strongly pure submodules is strongly pure .

View Publication Preview PDF
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
E-small prime sub-modules and e-small prime modules
...Show More Authors

Scopus Crossref
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Temperature Effect on Power Drop of Different Photovoltaic Modules
...Show More Authors

Solar module operating temperature is the second major factor affects the performance of solar photovoltaic panels after the amount of solar radiation. This paper presents a performance comparison of mono-crystalline Silicon (mc-Si), poly-crystalline Silicon (pc-Si), amorphous Silicon (a-Si) and Cupper Indium Gallium di-selenide (CIGS) photovoltaic technologies under Climate Conditions of Baghdad city. Temperature influence on the solar modules electric output parameters was investigated experimentally and their temperature coefficients was calculated. These temperature coefficients are important for all systems design and sizing. The experimental results revealed that the pc-Si module showed a decrease in open circuit v

... Show More
View Publication Preview PDF
Publication Date
Thu Jan 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Strongly Maximal Submodules with A Study of Their Influence on Types of Modules
...Show More Authors

      Let S be a commutative ring with identity, and A is an S-module. This paper introduced an important concept, namely strongly maximal submodule. Some properties and many results were proved as well as the behavior of that concept with its localization was studied and shown.

View Publication Preview PDF
Crossref
Publication Date
Tue Jan 01 2002
Journal Name
Iraqi Journal Of Science
Special selfgenerator Modules
...Show More Authors

Let R be a commutative ring with identity, and let M be a unitary left R-module. M is called special selfgenerator or weak multiplication module if for each cyclic submodule Ra of M (equivalently, for each submodule N of M) there exists a family {fi} of endomorphism of M such that Ra = ∑_i▒f_i (M) (equivalently N = ∑_i▒f_i (M)). In this paper we introduce a class of modules properly contained in selfgenerator modules called special selfgenerator modules, and we study some of properties of these modules.

Preview PDF
Publication Date
Tue Jan 01 2002
Journal Name
Iraqi Journal Of Science
On Regular Modules
...Show More Authors

Let R be a commutative ring with identity, and let M be a unitary left R-module. M is called Z-regular if every cyclic submodule (equivalently every finitely generated) is projective and direct summand. And a module M is F-regular if every submodule of M is pure. In this paper we study a class of modules lies between Z-regular and F-regular module, we call these modules regular modules.

Preview PDF
Publication Date
Mon May 22 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Chained fuzzy modules
...Show More Authors

        Let R be a commutative ring with unity. In this paper we introduce the notion of chained fuzzy modules as a generalization of chained modules. We investigate several characterizations and properties of this concept

View Publication Preview PDF
Publication Date
Fri Jan 01 2010
Journal Name
Iraqi Journal Of Science
PRIME HOLLOW MODULES
...Show More Authors

A non-zero module M is called hollow, if every proper submodule of M is small. In this work we introduce a generalization of this type of modules; we call it prime hollow modules. Some main properties of this kind of modules are investigated and the relation between these modules with hollow modules and some other modules are studied, such as semihollow, amply supplemented and lifting modules.

View Publication Preview PDF
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Coclosed Rickart Modules
...Show More Authors

   Let  be a right module over an arbitrary ring  with identity and  . In this work, the coclosed rickart modules as a generalization of  rickart  modules is given. We say  a module  over   coclosed rickart if for each ,   is a coclosed submodule of  . Basic results over this paper are introduced and connections between these modules and otherwise notions are investigated.

 

View Publication Preview PDF
Crossref
Publication Date
Sun Dec 04 2011
Journal Name
Baghdad Science Journal
Approximate Regular Modules
...Show More Authors

There are two (non-equivalent) generalizations of Von Neuman regular rings to modules; one in the sense of Zelmanowize which is elementwise generalization, and the other in the sense of Fieldhowse. In this work, we introduced and studied the approximately regular modules, as well as many properties and characterizations are considered, also we study the relation between them by using approximately pointwise-projective modules.

View Publication Preview PDF
Crossref