Preferred Language
Articles
/
jih-2150
New Technique for Solving Autonomous Equations
...Show More Authors

This paper demonstrates a new technique based on a combined form of the new transform method with homotopy perturbation method to find the suitable accurate solution of autonomous Equations with initial condition.  This technique is called the transform homotopy perturbation method (THPM). It can be used to solve the problems without resorting to the frequency domain.The implementation of the suggested method demonstrates the usefulness in finding exact solution for linear and nonlinear problems. The practical results show the efficiency and reliability of technique and easier implemented than HPM in finding exact solutions.Finally, all algorithms in this paper implemented in MATLAB version 7.12.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Sep 25 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Approximate Solution for Fuzzy Differential Algebraic Equations of Fractional Order Using Adomian Decomposition Method
...Show More Authors

      In this paper we shall prepare an  sacrificial solution for fuzzy differential algebraic equations of fractional order (FFDAEs) based on the Adomian decomposition method (ADM) which is proposed to solve (FFDAEs) . The blurriness will appear in the boundary conditions, to be fuzzy numbers. The solution of the proposed pattern of  equations is studied in the form of a convergent series with readily computable components. Several examples are resolved as  clarifications, the numerical outcomes are obvious that the followed approach is simple to perform and precise when utilized to (FFDAEs).

 

View Publication Preview PDF
Publication Date
Sun Sep 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Approximate Solution for Fuzzy Differential Algebraic Equations of Fractional Order Using Adomian Decomposition Method
...Show More Authors

      In this paper we shall prepare an  sacrificial solution for fuzzy differential algebraic equations of fractional order (FFDAEs) based on the Adomian decomposition method (ADM) which is proposed to solve (FFDAEs) . The blurriness will appear in the boundary conditions, to be fuzzy numbers. The solution of the proposed pattern of  equations is studied in the form of a convergent series with readily computable components. Several examples are resolved as  clarifications, the numerical outcomes are obvious that the followed approach is simple to perform and precise when utilized to (FFDAEs).

View Publication Preview PDF
Publication Date
Sat Oct 28 2023
Journal Name
Baghdad Science Journal
Newton-Kantorovich Method for Solving One of the Non-Linear Sturm-Liouville Problems
...Show More Authors

Due to its importance in physics and applied mathematics, the non-linear Sturm-Liouville problems
witnessed massive attention since 1960. A powerful Mathematical technique called the Newton-Kantorovich
method is applied in this work to one of the non-linear Sturm-Liouville problems. To the best of the authors’
knowledge, this technique of Newton-Kantorovich has never been applied before to solve the non-linear
Sturm-Liouville problems under consideration. Accordingly, the purpose of this work is to show that this
important specific kind of non-linear Sturm-Liouville differential equations problems can be solved by
applying the well-known Newton-Kantorovich method. Also, to show the efficiency of appl

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Iraqi Journal Of Science
Using Multi-Objective Bat Algorithm for Solving Multi-Objective Non-linear Programming Problem
...Show More Authors

Human beings are greatly inspired by nature. Nature has the ability to solve very complex problems in its own distinctive way. The problems around us are becoming more and more complex in the real time and at the same instance our mother nature is guiding us to solve these natural problems. Nature gives some of the logical and effective ways to find solutions to these problems. Nature acts as an optimized source for solving the complex problems.  Decomposition is a basic strategy in traditional multi-objective optimization. However, it has not yet been widely used in multi-objective evolutionary optimization.   

Although computational strategies for taking care of Multi-objective Optimization Problems (MOPs) h

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (7)
Scopus Crossref
Publication Date
Sun May 17 2020
Journal Name
Iraqi Journal Of Science
Nonclassical Symmetry of Differential Equations
...Show More Authors

In this paper, we discuss the difference between classical and nonclassical symmetries. In addition, we found the non-classical symmetry of the Benjamin Bona Mahony Equation (BBM). Finally, we found a new exact solution to a Benjamin Bona Mahony Equation (BBM) using nonclassical symmetry.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sun Sep 07 2014
Journal Name
Baghdad Science Journal
An Algorithm for nth Order Intgro-Differential Equations by Using Hermite Wavelets Functions
...Show More Authors

In this paper, the construction of Hermite wavelets functions and their operational matrix of integration is presented. The Hermite wavelets method is applied to solve nth order Volterra integro diferential equations (VIDE) by expanding the unknown functions, as series in terms of Hermite wavelets with unknown coefficients. Finally, two examples are given

View Publication Preview PDF
Crossref
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Numerical and Analytical Solutions of Space-Time Fractional Partial Differential Equations by Using a New Double Integral Transform Method
...Show More Authors

  This work discusses the beginning of fractional calculus and how the Sumudu and Elzaki transforms are applied to fractional derivatives. This approach combines a double Sumudu-Elzaki transform strategy to discover analytic solutions to space-time fractional partial differential equations in Mittag-Leffler functions subject to initial and boundary conditions. Where this method gets closer and closer to the correct answer, and the technique's efficacy is demonstrated using numerical examples performed with Matlab R2015a.

View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Efficient Algorithm for Solving Fuzzy Singularly Perturbed Volterra Integro-Differential Equation
...Show More Authors

     In this paper, we design a fuzzy neural network to solve fuzzy singularly perturbed Volterra integro-differential equation by using a High Performance Training Algorithm such as the Levenberge-Marqaurdt (TrianLM) and the sigmoid function of the hidden units which is the hyperbolic tangent activation function. A fuzzy trial solution to fuzzy singularly perturbed Volterra integro-differential equation is written as a sum of two components. The first component meets the fuzzy requirements, however, it does not have any fuzzy adjustable parameters. The second component is a feed-forward fuzzy neural network with fuzzy adjustable parameters. The proposed method is compared with the analytical solutions. We find that the proposed meth

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Jan 04 2021
Journal Name
Iium Engineering Journal
RELIABLE ITERATIVE METHODS FOR SOLVING 1D, 2D AND 3D FISHER’S EQUATION
...Show More Authors

In the present paper, three reliable iterative methods are given and implemented to solve the 1D, 2D and 3D Fisher’s equation. Daftardar-Jafari method (DJM), Temimi-Ansari method (TAM) and Banach contraction method (BCM) are applied to get the exact and numerical solutions for Fisher's equations. The reliable iterative methods are characterized by many advantages, such as being free of derivatives, overcoming the difficulty arising when calculating the Adomian polynomial boundaries to deal with nonlinear terms in the Adomian decomposition method (ADM), does not request to calculate Lagrange multiplier as in the Variational iteration method (VIM) and there is no need to create a homotopy like in the Homotopy perturbation method (H

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Sun Jun 07 2015
Journal Name
Baghdad Science Journal
Direct method for Solving Nonlinear Variational Problems by Using Hermite Wavelets
...Show More Authors

In this work, we first construct Hermite wavelets on the interval [0,1) with it’s product, Operational matrix of integration 2^k M×2^k M is derived, and used it for solving nonlinear Variational problems with reduced it to a system of algebric equations and aid of direct method. Finally, some examples are given to illustrate the efficiency and performance of presented method.

View Publication Preview PDF
Crossref