Preferred Language
Articles
/
jih-2148
Approximaitly Prime Submodules and Some Related Concepts
...Show More Authors

In this research note approximately prime submodules is defined as a new generalization of prime submodules of unitary modules over a commutative ring with identity. A proper submodule  of an -module  is called an approximaitly prime submodule of  (for short app-prime submodule), if when ever , where , , implies that either  or . So, an ideal  of a ring  is called app-prime ideal of  if   is an app-prime submodule of -module . Several basic properties, characterizations and examples of approximaitly prime submodules were given. Furthermore, the definition of approximaitly prime radical of submodules of modules were introduced, and some of it is properties were established.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
Basrah Journal Of Science
Nearly Maximal Submodules
...Show More Authors

Preview PDF
Publication Date
Sun Mar 01 2015
Journal Name
Baghdad Science Journal
S-maximal Submodules
...Show More Authors

Throughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ⊊ W ⊆ M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of rings

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Mar 01 2015
Journal Name
Baghdad Science Journal
S-maximal Submodules
...Show More Authors

Throughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ? W ? M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of ri

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Oct 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Weak Essential Fuzzy Submodules Of Fuzzy Modules
...Show More Authors

        Throughout this paper, we introduce the notion of weak essential F-submodules of F-modules as a generalization of  weak essential submodules. Also we study the homomorphic image and inverse image of weak essential F-submodules.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Mar 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Semi-Essential Submodules
...Show More Authors

Let R be a commutative ring with identity and let M be a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of semi-essential submodules which introduced by Ali S. Mijbass and Nada K. Abdullah, and we make simple changes to the definition relate with the zero submodule, so we say that a submodule N of an R-module M is called semi-essential, if whenever N ∩ P = (0), then P = (0) for each prime submodule P of M. Various properties of semi-essential submodules are considered.

View Publication Preview PDF
Publication Date
Sun Mar 01 2009
Journal Name
Baghdad Science Journal
Some Results On Lie Ideals With (σ,τ)-derivationIn Prime Rings
...Show More Authors

In this paper, we proved that if R is a prime ring, U be a nonzero Lie ideal of R , d be a nonzero (?,?)-derivation of R. Then if Ua?Z(R) (or aU?Z(R)) for a?R, then either or U is commutative Also, we assumed that Uis a ring to prove that: (i) If Ua?Z(R) (or aU?Z(R)) for a?R, then either a=0 or U is commutative. (ii) If ad(U)=0 (or d(U)a=0) for a?R, then either a=0 or U is commutative. (iii) If d is a homomorphism on U such that ad(U) ?Z(R)(or d(U)a?Z(R), then a=0 or U is commutative.

View Publication Preview PDF
Crossref
Publication Date
Mon Apr 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Semisecond Submodules
...Show More Authors

      Let  be a right module over a ring  with identity. The semisecond submodules are studied in this paper. A nonzero submodule  of   is called semisecond if    for each . More information and characterizations about this concept is provided in our work.

View Publication Preview PDF
Crossref
Publication Date
Thu May 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Weakly Quasi-Prime Module
...Show More Authors

  In this work we shall introduce the concept of weakly quasi-prime modules and give some properties of this type of modules.

View Publication Preview PDF
Publication Date
Thu Apr 27 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
S-Coprime Submodules
...Show More Authors

  In this paper, we introduce and study the concept of S-coprime submodules, where a proper submodule N of an R-module M is called S-coprime submodule if M N is S-coprime Rmodule. Many properties about this concept are investigated.

View Publication Preview PDF
Publication Date
Wed May 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Coprime Submodules
...Show More Authors

  Let R be a commutative ring with unity and let M be a unitary R-module. Let N be a proper submodule of M, N is called a coprime submodule if   is a coprime R-module, where   is a coprime R-module if for any r  R, either O      r or     r .         In this paper we study coprime submodules and give many properties related with this concept.

View Publication Preview PDF