In this paper, the concept of contraction mapping on a -metric space is extended with a consideration on local contraction. As a result, two fixed point theorems were proved for contraction on a closed ball in a complete -metric space.
The purpose of this research is to introduce a concept of general partial metric spaces as a generalization of partial metric space. Give some results and properties and find relations between general partial metric space, partial metric spaces and D-metric spaces.
This paper aims to prove an existence theorem for Voltera-type equation in a generalized G- metric space, called the -metric space, where the fixed-point theorem in - metric space is discussed and its application. First, a new contraction of Hardy-Rogess type is presented and also then fixed point theorem is established for these contractions in the setup of -metric spaces. As application, an existence result for Voltera integral equation is obtained.
In this paper, a fixed point theorem of nonexpansive mapping is established to study the existence and sufficient conditions for the controllability of nonlinear fractional control systems in reflexive Banach spaces. The result so obtained have been modified and developed in arbitrary space having Opial’s condition by using fixed point theorem deals with nonexpansive mapping defined on a set has normal structure. An application is provided to show the effectiveness of the obtained result.
The purpose of this paper is to introduce and prove some coupled coincidence fixed point theorems for self mappings satisfying -contractive condition with rational expressions on complete partially ordered metric spaces involving altering distance functions with mixed monotone property of the mapping. Our results improve and unify a multitude of coupled fixed point theorems and generalize some recent results in partially ordered metric space. An example is given to show the validity of our main result.
In this paper, we introduce a new class of sets, namely , s*g-ï¡-open sets and we show that the family of all s*g-ï¡-open subsets of a topological space ) ,X( ï´ from a topology on X which is finer than ï´ . Also , we study the characterizations and basic properties of s*g-ï¡open sets and s*g-ï¡-closed sets . Moreover, we use these sets to define and study a new class of functions, namely , s*g- ï¡ -continuous functions and s*g- ï¡ -irresolute functions in topological spaces . Some properties of these functions have been studied .
The aim of the present work is to define a new class of closed soft sets in soft closure spaces, namely, generalized closed soft sets (
In this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise closure topological spaces, fibrewise wake topological spaces, fibrewise strong topological spaces over B. Also, we introduce the concepts of fibrewise w-closed (resp., w-coclosed, w-biclosed) and w-open (resp., w-coopen, w-biopen) topological spaces over B; Furthermore we state and prove several Propositions concerning with these concepts.
In this paper we define and study new concepts of functions on fibrewise topological spaces over B namely, fibrewise weakly (resp., closure, strongly) continuoac; funttions which are analogous of weakly
(resp., closure, strongly) continuous functions and the main result is : Let <p : XY be a fibrewise closure (resp., weakly, closure, strongly, strongly) continuous function, where Y is fibrewise topological space over B and X is a fibrewise set which has the
in
... Show More