Preferred Language
Articles
/
jih-1950
A Comparison between Multi-Layer Perceptron and Radial Basis Function Networks in Detecting Humans Based on Object Shape
...Show More Authors

       Human detection represents a main problem of interest when using video based monitoring. In this paper, artificial neural networks, namely multilayer perceptron (MLP) and radial basis function (RBF) are used to detect humans among different objects in a sequence of frames (images) using classification approach. The classification used is based on the shape of the object instead of depending on the contents of the frame. Initially, background subtraction is depended to extract objects of interest from the frame, then statistical and geometric information are obtained from vertical and horizontal projections of the objects that are detected to stand for the shape of the object. Next to this step, two types of neural networks are used to classify the extracted objects. Tests have been performed on a sequence of frames, and the simulation results by MATLAB showed that the RBF neural network gave a better performance compared with the MLP neural network where the RBF model gave a mean squared error (MSE) equals to 2.36811e-18 against MSE equals to 2.6937e-11 achieved by the MLP model. The more important thing observed is that the RBF approach required less time to classify the detected object as human compared to the MLP, where the RBF took approximately 86.2% lesser time to give the decision.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Journal Of Clinical And Diagnostic Research
Prenatal Markers of Foetal Complications
...Show More Authors

Prenatal markers are commonly used in practice to screen for some foetal abnormalities. They can be biochemical or ultrasonic markers in addition to the newly used cell free Deoxyribonucleic Acid (DNA) estimation. This review aimed to illustrate the applications of the prenatal screening, and the reliability of these tests in detecting the presence of abnormal chromosomes such as trisomy-21, trisomy-18, and trisomy-13 in addition to neural tube defects. Prenatal markers can also be used in the anticipation of some obstetrical complications depending on levels of these markers in the mother’s circulation. In the developed countries, prenatal screening tests are regularly used during antenatal care period. Neural tube defects, numer

... Show More
View Publication
Clarivate Crossref
Publication Date
Sun Dec 09 2018
Journal Name
Baghdad Science Journal
Pose Invariant Palm Vein Identification System using Convolutional Neural Network
...Show More Authors

Palm vein recognition is a one of the most efficient biometric technologies, each individual can be identified through its veins unique characteristics, palm vein acquisition techniques is either contact based or contactless based, as the individual's hand contact or not the peg of the palm imaging device, the needs a contactless palm vein system in modern applications rise tow problems, the pose variations (rotation, scaling and translation transformations) since the imaging device cannot aligned correctly with the surface of the palm, and a delay of matching process especially for large systems, trying to solve these problems. This paper proposed a pose invariant identification system for contactless palm vein which include three main

... Show More
View Publication Preview PDF
Scopus (19)
Crossref (2)
Scopus Crossref
Publication Date
Tue Sep 29 2020
Journal Name
Iraqi Journal Of Science
Smart Doctor: Performance of Supervised ART-I Artificial Neural Network for Breast Cancer Diagnoses
...Show More Authors

Wisconsin Breast Cancer Dataset (WBCD) was employed to show the performance of the Adaptive Resonance Theory (ART), specifically the supervised ART-I Artificial Neural Network (ANN), to build a breast cancer diagnosis smart system. It was fed with different learning parameters and sets. The best result was achieved when the model was trained with 50% of the data and tested with the remaining 50%. Classification accuracy was compared to other artificial intelligence algorithms, which included fuzzy classifier, MLP-ANN, and SVM. We achieved the highest accuracy with such low learning/testing ratio.

View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Fri Feb 17 2023
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
Deploying Facial Segmentation Landmarks for Deepfake Detection
...Show More Authors

Deepfake is a type of artificial intelligence used to create convincing images, audio, and video hoaxes and it concerns celebrities and everyone because they are easy to manufacture. Deepfake are hard to recognize by people and current approaches, especially high-quality ones. As a defense against Deepfake techniques, various methods to detect Deepfake in images have been suggested. Most of them had limitations, like only working with one face in an image. The face has to be facing forward, with both eyes and the mouth open, depending on what part of the face they worked on. Other than that, a few focus on the impact of pre-processing steps on the detection accuracy of the models. This paper introduces a framework design focused on this asp

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Feb 28 2023
Journal Name
Iraqi Journal Of Science
Using of Different Satellite-Derived Indices to Detect the Spatiotemporal Changes of the Al-Razzaza Lake, Iraq
...Show More Authors

          Remote sensing and GIS applications (Geoinformatics tools) involve a wide range of techniques for providing a solution for future water resources management and offer an excellent means to improve knowledge of sustainable planning. Al-Razzaza is the second largest lake in Iraq; it is a common source of fishery fortune and floodwater reservoir in southwestern Iraq. In recent years, the lake faced a noticeable amount of desiccation, which is considered a threat to the biodiversity and wildlife of the lake. The study aimed to detect the Lake's spatiotemporal changes from 1988 to 2018. Multi satellite-derived indices were investigated for the extracting of the lake water body. Results showed that the lake volume decrea

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Wed Aug 31 2022
Journal Name
Iraqi Journal Of Science
Data Mining Methods for Extracting Rumors Using Social Analysis Tools
...Show More Authors

       Rumors are typically described as remarks whose true value is unknown. A rumor on social media has the potential to spread erroneous information to a large group of individuals. Those false facts will influence decision-making in a variety of societies. In online social media, where enormous amounts of information are simply distributed over a large network of sources with unverified authority, detecting rumors is critical. This research proposes that rumor detection be done using Natural Language Processing (NLP) tools as well as six distinct Machine Learning (ML) methods (Nave Bayes (NB), random forest (RF), K-nearest neighbor (KNN), Logistic Regression (LR), Stochastic Gradient Descent (SGD) and Decision Tree (

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Science
Educational Data Mining For Predicting Academic Student Performance Using Active Classification
...Show More Authors

     The increasing amount of educational data has rapidly in the latest few years. The Educational Data Mining (EDM) techniques are utilized to detect the valuable pattern so that improves the educational process and to obtain high performance of all educational elements. The proposed work contains three stages: preprocessing, features selection, and an active classification stage. The dataset was collected using EDM that had a lack in the label data, it contained 2050 records collected by using questionnaires and by using the students’ academic records. There are twenty-five features that were combined from the following five factors: (curriculum, teacher, student, the environment of education, and the family). Active learning ha

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
An Effective Hybrid Deep Neural Network for Arabic Fake News Detection
...Show More Authors

Recently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (4)
Scopus Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of Engineering
FILTRATION MODELING USING ARTIFICIAL NEURAL NETWORK (ANN)
...Show More Authors

In this research Artificial Neural Network (ANN) technique was applied to study the filtration process in water treatment. Eight models have been developed and tested using data from a pilot filtration plant, working under different process design criteria; influent turbidity, bed depth, grain size, filtration rate and running time (length of the filtration run), recording effluent turbidity and head losses. The ANN models were constructed for the prediction of different performance criteria in the filtration process: effluent turbidity, head losses and running time. The results indicate that it is quite possible to use artificial neural networks in predicting effluent turbidity, head losses and running time in the filtration process, wi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jun 01 2024
Journal Name
Al-rafidain Journal Of Computer Sciences And Mathematics
Braille Character Recognition System: Review
...Show More Authors

The Braille Recognition System is the process of capturing a Braille document image and turning its content into its equivalent natural language characters. The Braille Recognition System's cell transcription and Braille cell recognition are the two basic phases that follow one another. The Braille Recognition System is a technique for locating and recognizing a Braille document stored as an image, such as a jpeg, jpg, tiff, or gif image, and converting the text into a machine-readable format, such as a text file. BCR translates an image's pixel representation into its character representation. As workers at visually impaired schools and institutes, we profit from Braille recognition in a variety of ways. The Braille Recognition S

... Show More
View Publication Preview PDF