Human detection represents a main problem of interest when using video based monitoring. In this paper, artificial neural networks, namely multilayer perceptron (MLP) and radial basis function (RBF) are used to detect humans among different objects in a sequence of frames (images) using classification approach. The classification used is based on the shape of the object instead of depending on the contents of the frame. Initially, background subtraction is depended to extract objects of interest from the frame, then statistical and geometric information are obtained from vertical and horizontal projections of the objects that are detected to stand for the shape of the object. Next to this step, two types of neural networks are used to classify the extracted objects. Tests have been performed on a sequence of frames, and the simulation results by MATLAB showed that the RBF neural network gave a better performance compared with the MLP neural network where the RBF model gave a mean squared error (MSE) equals to 2.36811e-18 against MSE equals to 2.6937e-11 achieved by the MLP model. The more important thing observed is that the RBF approach required less time to classify the detected object as human compared to the MLP, where the RBF took approximately 86.2% lesser time to give the decision.
Background: Ankylosing spondylitis is a chronic inflammatory disease that mostly involves the spine and sacroiliac joints. It is associated with a decreased quality of life. Biological medicines such as infliximab and its biosimilar are the mainstay treatments for active ankylosing spondylitis.
Objective: The study objective was to conduct a pharmacoeconomic study comparing the cost-effectiveness of the reference infliximab with its biosimilar in ankylosing spondylitis patients visiting public hospitals.
Subjects and Method: This is a two-center pharmacoeconomic study performed at two large teaching governmental hospitals in Baghdad, Iraq, which s
... Show MoreShow the greatness of Allah Almighty when contemplating the benefits of trees and plants in
Life in general and trees mentioned in the Koran in particular, do not have to meditate that
He acknowledges the greatness of the Almighty Creator, and his preference over man, that he is prepared for his livelihood
And give him what he can do in this life to the fullest.
The study also stressed the need to urge people to this great blessing trees
By preserving them and wasteful wastefulness.
The study also pointed to the need to guide people towards the aesthetics and improvements of
Look through and enjoy the beauty of trees, flowers, greenery and fruits ..
In this paper, a Monte Carlo Simulation technique is used to compare the performance of MLE and the standard Bayes estimators of the reliability function of the one parameter exponential distribution.Two types of loss functions are adopted, namely, squared error loss function (SELF) and modified square error loss function (MSELF) with informative and non- informative prior. The criterion integrated mean square error (IMSE) is employed to assess the performance of such estimators .
In this work, a new formula of intensity distribution in image plane of elliptical object was founded (Elliptical spread function), by using optical system including circular aperture. The Gauss quadrature method of numerical integral was used for calculating equation's integrals. Curves are shown for system having focal error and intensity distribution in focal axis.
The choice of binary Pseudonoise (PN) sequences with specific properties, having long period high complexity, randomness, minimum cross and auto- correlation which are essential for some communication systems. In this research a nonlinear PN generator is introduced . It consists of a combination of basic components like Linear Feedback Shift Register (LFSR), ?-element which is a type of RxR crossbar switches. The period and complexity of a sequence which are generated by the proposed generator are computed and the randomness properties of these sequences are measured by well-known randomness tests.