The aim of this work presents the analytical studies of both the magnetohydrodynamic (MHD) flux and flow of the non-magnetohydro dynamic (MHD) for a fluid of generalized Burgers’ (GB) withinan annular pipe submitted under Sinusoidal Pressure (SP)gradient. Closed beginning velocity's' solutions are taken by performing the finite Hankel transform (FHT) and Laplace transform (LT) of the successivefraction derivatives. Lastly, the figures were planned to exhibition the transformations effects of different fractional parameters (DFP) on the profile of velocity of both flows.
This paper deals with numerical study of the flow of stable and fluid Allamstqr Aniotina in an area surrounded by a right-angled triangle has touched particularly valuable secondary flow cross section resulting from the pressure gradient In the first case was analyzed stable flow where he found that the equations of motion that describe the movement of the fluid
A numerical evaluation of the crucial physical properties of a 3D unsteady MHD flow along a stretching sheet for a Casson fluid in the presence of radiation and viscous dissipation has been carried out. Meanwhile, by applying similarity transformations, the nonlinear partial differential equations (PDEs) are transformed into a system of ordinary differential equations (ODEs). Furthermore, in the numerical solution of nonlinear ODEs, the shooting method along with Adams Moulton method of order four has been used. The obtained numerical results are computed with the help of FORTRAN. The tables and graphs describe the numerical results for different physical parameters which affect the velocity and temperature profiles.
The aim of this paper is to analyzed unsteady heat transfer for magnetohydrodynamic (MHD) flow of a second grade fluid in a channel with porous medium. The equations which was used to describe the flow are the momentum and energy, these equations were written to get thier non dimentional form. Homotopy analysis method (HAM) is employed to obtain a semi-analytical solutions for velocity and heat transfer fields. The effect of each dimensionless parameter upon the velocity and temperature distributions is analyzed and shown graphically by using MATHEMATICA package.
This paper concerns the peristaltic flow of a Williamson fluid with variable viscosity model through porous medium under combined effects of MHD and wall properties. The assumptions of Reynolds number and long wavelength is investigated. The flow is investigated in a wave frame of reference moving with velocity of the wave. The perturbation series in terms of the Weissenberg number (We <1) was used to obtain explicit forms for velocity field and stream function. The effects of thermal conductivity, Grashof number, Darcy number, magnet, rigidity, stiffness of the wall and viscous damping force parameters on velocity and stream function have been studied.
In drilling processes, the rheological properties pointed to the nature of the run-off and the composition of the drilling mud. Drilling mud performance can be assessed for solving the problems of the hole cleaning, fluid management, and hydraulics controls. The rheology factors are typically termed through the following parameters: Yield Point (Yp) and Plastic Viscosity (μp). The relation of (YP/ μp) is used for measuring of levelling for flow. High YP/ μp percentages are responsible for well cuttings transportation through laminar flow. The adequate values of (YP/ μp) are between 0 to 1 for the rheological models which used in drilling. This is what appeared in most of the models that were used in this study. The pressure loss
... Show MoreThe goal of this study is to investigate the effects of heat transfer on a non-uniform inclined asymmetrical channel with couple stress fluids via a porous medium using incline magnetohydrodynamics. The governing equation is studied while using low Reynolds approximations and long-wavelength assumptions. Mathematical expressions for (pressure gradient), (temperature), (axial velocity), (heat temperature coefficient), and (stream function). A precise set of values for the various parameters in the present model has been used. The mathematical expressions for axial velocity, stream function, pressure gradient, and pressure rise per wavelength have been derived analytically. "MATHEMATICA" is used to present the computational result
... Show MoreIn this paper, the effect of thermal radiation and magnetic field on the boundary layer flow and heat transfer of a viscous fluid due to an exponentially stretching sheet is proposed. The governing boundary layer equations are reduced to a system of ordinary differential equations. The homotopy analysis method (HAM) is employed to solve the velocity and temperature equations.
In this research, the effect of the rotation variable on the peristaltic flow of Sutterby fluid in an asymmetric channel with heat transfer is investigated. The modeling of mathematics is created in the presence of the effect of rotation, using constitutive equations following the Sutterby fluid model. In flow analysis, assumptions such as long wave length approximation and low Reynolds number are utilized. The resulting nonlinear equation is numerically solved using the perturbation method. The effects of the Grashof number, the Hartmann number, the Hall parameter, the magnetic field, the Sutterby fluid parameter, and heat transfer analysis on the velocity and the pressure gradient are analyzed graphically. Utilizing MATHEMATIC
... Show More