Preferred Language
Articles
/
jih-1809
Different Estimation Methods for System Reliability Multi-Components model: Exponentiated Weibull Distribution
...Show More Authors

        In this paper, estimation of system reliability of the multi-components in stress-strength model R(s,k) is considered, when the stress and strength are independent random variables and follows the Exponentiated Weibull Distribution (EWD) with known first shape parameter θ and, the second shape parameter α is unknown using different estimation methods. Comparisons among the proposed estimators through  Monte Carlo simulation technique were made depend on mean squared error (MSE)  criteria

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Sep 01 2010
Journal Name
Journal Of Economics And Administrative Sciences
Finding Mixture Weibull Distribution
...Show More Authors

In this paper a new idea was introduced which is finding a new distribution from other distributions using mixing parameters; wi  where  0 < wi < 1 ­and . Therefore we can get many mixture distributions with a number of parameters. In this paper I introduced the idea of a mixture Weibull distribution which is produced from mixing two Weibull distributions; the first with two parameters, the scale parameter , and the shape parameter,  and the second also has the scale parameter , and the shape parameter,  in addition to the location parameter, . These two distributions were mixed using a new parameter which is the mixing parameter w which represents the proportion

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Aug 01 2015
Journal Name
Journal Of Engineering
Choosing Appropriate Distribution ‏‎by Minitab’s 17 Software to Analysis System Reliability
...Show More Authors

This research aims to choose the appropriate  probability ‎ distribution  ‎‏‎ to the reliability‎        analysis‎ for  an   item through ‎ collected data for operating and stoppage  time of  the case  study.

    Appropriate choice for .probability distribution   is when  the data look to be on or  close the form fitting line for probability plot and test the data  for  goodness of fit .

     Minitab’s 17 software  was used ‎  for this  purpose after  arranging collected data and setting it in the the program‎.

 &nb

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
Comparison of Some of Estimation methods of Stress-Strength Model: R = P(Y < X < Z)
...Show More Authors

In this study, the stress-strength model R = P(Y < X < Z)  is discussed as an important parts of reliability system by assuming that the random variables follow Invers Rayleigh Distribution. Some traditional estimation methods are used    to estimate the parameters  namely; Maximum Likelihood, Moment method, and Uniformly Minimum Variance Unbiased estimator and Shrinkage estimator using three types of shrinkage weight factors. As well as, Monte Carlo simulation are used to compare the estimation methods based on mean squared error criteria.  

View Publication Preview PDF
Scopus (3)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Constructing a new mixed probability distribution with fuzzy reliability estimation
...Show More Authors

This paper deals with constructing mixed probability distribution from mixing exponential

Scopus (5)
Scopus
Publication Date
Sun Sep 22 2019
Journal Name
Baghdad Science Journal
Estimation of Survival Function for Rayleigh Distribution by Ranking function:-
...Show More Authors

In this article, performing and deriving te probability density function for Rayleigh distribution is done by using ordinary least squares estimator method and Rank set estimator method. Then creating interval for scale parameter of Rayleigh distribution. Anew method using   is used for fuzzy scale parameter. After that creating the survival and hazard functions for two ranking functions are conducted to show which one is beast.

View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Mar 27 2019
Journal Name
Iraqi Journal Of Science
Fuzzy Survival and Hazard Functions Estimation for Rayleigh distribution
...Show More Authors

In this article, performing and deriving the probability density function for Rayleigh distribution by using maximum likelihood estimator method and moment estimator method, then crating the crisp survival function and crisp hazard function to find the interval estimation for scale parameter by using a linear trapezoidal membership function. A new proposed procedure used to find the fuzzy numbers for the parameter by utilizing (     to find a fuzzy numbers for scale parameter of Rayleigh distribution. applying two algorithms by using ranking functions to make the fuzzy numbers as crisp numbers. Then computed the survival functions and hazard functions by utilizing the real data application.

View Publication Preview PDF
Publication Date
Thu Dec 30 2021
Journal Name
Iraqi Journal Of Science
On Estimating Reliability of a Stress – Strength Model in Case of Rayleigh Pareto Distribution
...Show More Authors

The stress – strength model is one of the models that are used to compute reliability. In this paper, we derived mathematical formulas for the reliability of the stress – strength model that follows Rayleigh Pareto (Rayl. – Par) distribution. Here, the model has a single component, where strength Y is subjected to a stress X, represented by moment, reliability function, restricted behavior, and ordering statistics. Some estimation methods were used, which are the maximum likelihood, ordinary least squares, and two shrinkage methods, in addition to a newly suggested method for weighting the contraction. The performance of these estimates was studied empirically by using simulation experimentation that could give more varieties for d

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (3)
Scopus Crossref
Publication Date
Mon Jul 01 2019
Journal Name
Iop Conference Series: Materials Science And Engineering
On Estimation of the Stress – Strength Reliability Based on Lomax Distribution
...Show More Authors
Abstract<p>The present paper concerns with the problem of estimating the reliability system in the stress – strength model under the consideration non identical and independent of stress and strength and follows Lomax Distribution. Various shrinkage estimation methods were employed in this context depend on Maximum likelihood, Moment Method and shrinkage weight factors based on Monte Carlo Simulation. Comparisons among the suggested estimation methods have been made using the mean absolute percentage error criteria depend on MATLAB program.</p>
View Publication
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Wed Sep 01 2010
Journal Name
Journal Of Economics And Administrative Sciences
Using simulation to estimate parameters and reliability function for extreme value distribution
...Show More Authors

   This study includes Estimating scale parameter, location parameter  and reliability function  for Extreme Value (EXV) distribution by two methods, namely: -
- Maximum Likelihood Method (MLE).
- Probability Weighted Moments Method (PWM).

 Used simulations to generate the required samples to estimate the parameters and reliability function of different sizes(n=10,25,50,100) , and give real values for the parameters are and , replicate the simulation experiments (RP=1000)

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Apr 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Bayesian Inference for the Parameter and Reliability Function of Basic Gompertz Distribution under Precautionary loss Function
...Show More Authors

     In this paper, some estimators for the unknown shape parameter and reliability function of Basic Gompertz distribution have been obtained, such as Maximum likelihood estimator and Bayesian estimators under Precautionary loss function using Gamma prior and Jefferys prior. Monte-Carlo simulation is conducted to compare mean squared errors (MSE) for all these estimators for the shape parameter and integrated mean squared error (IMSE's) for comparing the performance of the Reliability estimators. Finally, the discussion is provided to illustrate the results that summarized in tables.

View Publication Preview PDF
Crossref