Preferred Language
Articles
/
jih-1807
Finite Element Method With Linear Rectangular Element for Solving Nanoscale InAs⁄GaAs Quantum Ring Structures
...Show More Authors

        This paper is concerned with the solution of the nanoscale structures consisting of the   with an effective mass envelope function theory, the electronic states of the  quantum ring are studied.  In calculations, the effects due to the different effective masses of electrons in and out the rings are included. The energy levels of the electron are calculated in the different shapes of rings, i.e., that the inner radius of rings sensitively change the electronic states. The energy levels of the electron are not sensitively dependent on the outer radius for large rings. The structures of  quantum rings are studied by the one electronic band Hamiltonian effective mass approximation, the energy- and position-dependent on electron effective mass approximation, and the spin-dependent on the Ben Daniel-Duke boundary conditions. In the description of the Hamiltonian matrix elements, the Finite elements method with different base piecewise linear function is adopted. The non-linear energy confinement problem is solved approximately by using the Finite elements method with piecewise  linear function, to calculate the energy of the one electron states for the   quantum ring. The results of numerical example are compared for accuracy and efficiency with the finite element method of linear triangular element. This comparison shows that good results of numerical example.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Aug 06 2018
Journal Name
Indian Journal Of Applied Research
STATISTICAL METHOD FOR SOLVING TRANSPORTATION PROBLEMS OF USING THE PROGRAMMING LANGUAGE MATLAB
...Show More Authors

Original Research Paper Mathematics 1-Introduction : In the light of the progress and rapid development of the applications of research in applications fields, the need to rely on scientific tools and cleaner for data processing has become a prominent role in the resolution of decisions in industrial and service institutions according to the real need of these methods to make them scientific methods to solve the problem Making decisions for the purpose of making the departments succeed in performing their planning and executive tasks. Therefore, we found it necessary to know the transport model in general and to use statistical methods to reach the optimal solution with the lowest possible costs in particular. And you know The Transportatio

... Show More
Publication Date
Fri Dec 01 2023
Journal Name
Baghdad Science Journal
Solving the Hotdog Problem by Using the Joint Zero-order Finite Hankel - Elzaki Transform
...Show More Authors

This paper is concerned with combining two different transforms to present a new joint transform FHET and its inverse transform IFHET. Also, the most important property of FHET was concluded and proved, which is called the finite Hankel – Elzaki transforms of the Bessel differential operator property, this property was discussed for two different boundary conditions, Dirichlet and Robin. Where the importance of this property is shown by solving axisymmetric partial differential equations and transitioning to an algebraic equation directly. Also, the joint Finite Hankel-Elzaki transform method was applied in solving a mathematical-physical problem, which is the Hotdog Problem. A steady state which does not depend on time was discussed f

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Nov 13 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Approximation Solution of a Nonlinear Parabolic Boundary Value Problem Via Galerkin Finite Elements Method with Crank-Nicolson
...Show More Authors

    This paper deals with finding the approximation solution of a nonlinear parabolic boundary value problem (NLPBVP) by using the Galekin finite element method (GFEM) in space and Crank Nicolson (CN) scheme in time, the problem then reduce to solve a Galerkin nonlinear algebraic system(GNLAS). The predictor and the corrector technique (PCT) is applied here to solve the GNLAS, by transforms it to a Galerkin linear algebraic system (GLAS). This GLAS is solved once using the Cholesky method (CHM) as it appear in the matlab package and once again using the Cholesky reduction order technique (CHROT) which we employ it here to save a massive time. The results, for CHROT are given by tables and figures and show

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Apr 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A New Approach to Solving Linear Fractional Programming Problem with Rough Interval Coefficients in the Objective Function
...Show More Authors

This paper presents a linear fractional programming problem (LFPP) with rough interval coefficients (RICs) in the objective function. It shows that the LFPP with RICs in the objective function can be converted into a linear programming problem (LPP) with RICs by using the variable transformations. To solve this problem, we will make two LPP with interval coefficients (ICs). Next, those four LPPs can be constructed under these assumptions; the LPPs can be solved by the classical simplex method and used with MS Excel Solver. There is also argumentation about solving this type of linear fractional optimization programming problem. The derived theory can be applied to several numerical examples with its details, but we show only two examples

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Accurate Four-Step Hybrid Block Method for Solving Higher-Order Initial Value Problems
...Show More Authors

This paper focuses on developing a self-starting numerical approach that can be used for direct integration of higher-order initial value problems of Ordinary Differential Equations. The method is derived from power series approximation with the resulting equations discretized at the selected grid and off-grid points. The method is applied in a block-by-block approach as a numerical integrator of higher-order initial value problems. The basic properties of the block method are investigated to authenticate its performance and then implemented with some tested experiments to validate the accuracy and convergence of the method.

View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Sun Sep 29 2019
Journal Name
Iraqi Journal Of Science
Dependent Element and Free Actions of Centralizer and Reverse Centralizer on Prime and Semiprime Semirings
...Show More Authors

     This paper develops the work of Mary Florence et.al. on centralizer of semiprime semirings and presents reverse centralizer of semirings with several propositions and lemmas. Also introduces the notion of dependent element and free actions on semirings with some results of free action of centralizer and reverse centralizer on semiprime semirings and some another mappings.

View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Tue May 06 2025
Journal Name
Aip Conference Proceedings
Enhance the performance of the wind turbine blade based on the blade element momentum theory
...Show More Authors

In order to improve the effectiveness, increase the life cycle, and avoid the blade structural failure of wind turbines, the blades need to be perfectly designed. Knowing the flow angle and the geometric characteristics of the blade is necessary to calculate the values of the induction factors (axial and tangential), which are the basis of the Blade Element Momentum theory (BEM). The aforementioned equations form an implicit and nonlinear system. Consequently, a straightforward iterative solution process can be used to solve this problem. A theoretical study of the aerodynamic performance of a horizontal-axis wind turbine blade was introduced using the BEM. The main objective of the current work is to examine the wind turbine blade’s perf

... Show More
View Publication
Scopus Crossref
Publication Date
Sun Sep 06 2009
Journal Name
Baghdad Science Journal
Extension of the Chebyshev Method of Quassi-Linear Parabolic P.D.E.S With Mixed Boundary Conditions
...Show More Authors

The researcher [1-10] proposed a method for computing the numerical solution to quasi-linear parabolic p.d.e.s using a Chebyshev method. The purpose of this paper is to extend the method to problems with mixed boundary conditions. An error analysis for the linear problem is given and a global element Chebyshev method is described. A comparison of various chebyshev methods is made by applying them to two-point eigenproblems. It is shown by analysis and numerical examples that the approach used to derive the generalized Chebyshev method is comparable, in terms of the accuracy obtained, with existing Chebyshev methods.

View Publication Preview PDF
Crossref
Publication Date
Thu Oct 20 2016
Journal Name
Sociological Methods & Research
Mean Monte Carlo Finite Difference Method for Random Sampling of a Nonlinear Epidemic System
...Show More Authors

In this article, a numerical method integrated with statistical data simulation technique is introduced to solve a nonlinear system of ordinary differential equations with multiple random variable coefficients. The utilization of Monte Carlo simulation with central divided difference formula of finite difference (FD) method is repeated n times to simulate values of the variable coefficients as random sampling instead being limited as real values with respect to time. The mean of the n final solutions via this integrated technique, named in short as mean Monte Carlo finite difference (MMCFD) method, represents the final solution of the system. This method is proposed for the first time to calculate the numerical solution obtained fo

... Show More
View Publication
Scopus (15)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Mon Apr 09 2018
Journal Name
Al-khwarizmi Engineering Journal
Creating Through Points in Linear Function with Parabolic Blends Path by Optimization Method
...Show More Authors

The linear segment with parabolic blend (LSPB) trajectory deviates from the specified waypoints. It is restricted to that the acceleration must be sufficiently high. In this work, it is proposed to engage modified LSPB trajectory with particle swarm optimization (PSO) so as to create through points on the trajectory. The assumption of normal LSPB method that parabolic part is centered in time around waypoints is replaced by proposed coefficients for calculating the time duration of the linear part. These coefficients are functions of velocities between through points. The velocities are obtained by PSO so as to force the LSPB trajectory passing exactly through the specified path points. Also, relations for velocity correction and exact v

... Show More
View Publication Preview PDF
Crossref (2)
Crossref