Preferred Language
Articles
/
jih-1807
Finite Element Method With Linear Rectangular Element for Solving Nanoscale InAs⁄GaAs Quantum Ring Structures
...Show More Authors

        This paper is concerned with the solution of the nanoscale structures consisting of the   with an effective mass envelope function theory, the electronic states of the  quantum ring are studied.  In calculations, the effects due to the different effective masses of electrons in and out the rings are included. The energy levels of the electron are calculated in the different shapes of rings, i.e., that the inner radius of rings sensitively change the electronic states. The energy levels of the electron are not sensitively dependent on the outer radius for large rings. The structures of  quantum rings are studied by the one electronic band Hamiltonian effective mass approximation, the energy- and position-dependent on electron effective mass approximation, and the spin-dependent on the Ben Daniel-Duke boundary conditions. In the description of the Hamiltonian matrix elements, the Finite elements method with different base piecewise linear function is adopted. The non-linear energy confinement problem is solved approximately by using the Finite elements method with piecewise  linear function, to calculate the energy of the one electron states for the   quantum ring. The results of numerical example are compared for accuracy and efficiency with the finite element method of linear triangular element. This comparison shows that good results of numerical example.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Accurate Four-Step Hybrid Block Method for Solving Higher-Order Initial Value Problems
...Show More Authors

This paper focuses on developing a self-starting numerical approach that can be used for direct integration of higher-order initial value problems of Ordinary Differential Equations. The method is derived from power series approximation with the resulting equations discretized at the selected grid and off-grid points. The method is applied in a block-by-block approach as a numerical integrator of higher-order initial value problems. The basic properties of the block method are investigated to authenticate its performance and then implemented with some tested experiments to validate the accuracy and convergence of the method.

View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Wed Apr 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A New Approach to Solving Linear Fractional Programming Problem with Rough Interval Coefficients in the Objective Function
...Show More Authors

This paper presents a linear fractional programming problem (LFPP) with rough interval coefficients (RICs) in the objective function. It shows that the LFPP with RICs in the objective function can be converted into a linear programming problem (LPP) with RICs by using the variable transformations. To solve this problem, we will make two LPP with interval coefficients (ICs). Next, those four LPPs can be constructed under these assumptions; the LPPs can be solved by the classical simplex method and used with MS Excel Solver. There is also argumentation about solving this type of linear fractional optimization programming problem. The derived theory can be applied to several numerical examples with its details, but we show only two examples

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Oct 20 2016
Journal Name
Sociological Methods & Research
Mean Monte Carlo Finite Difference Method for Random Sampling of a Nonlinear Epidemic System
...Show More Authors

In this article, a numerical method integrated with statistical data simulation technique is introduced to solve a nonlinear system of ordinary differential equations with multiple random variable coefficients. The utilization of Monte Carlo simulation with central divided difference formula of finite difference (FD) method is repeated n times to simulate values of the variable coefficients as random sampling instead being limited as real values with respect to time. The mean of the n final solutions via this integrated technique, named in short as mean Monte Carlo finite difference (MMCFD) method, represents the final solution of the system. This method is proposed for the first time to calculate the numerical solution obtained fo

... Show More
View Publication
Scopus (15)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Sun Sep 06 2009
Journal Name
Baghdad Science Journal
Extension of the Chebyshev Method of Quassi-Linear Parabolic P.D.E.S With Mixed Boundary Conditions
...Show More Authors

The researcher [1-10] proposed a method for computing the numerical solution to quasi-linear parabolic p.d.e.s using a Chebyshev method. The purpose of this paper is to extend the method to problems with mixed boundary conditions. An error analysis for the linear problem is given and a global element Chebyshev method is described. A comparison of various chebyshev methods is made by applying them to two-point eigenproblems. It is shown by analysis and numerical examples that the approach used to derive the generalized Chebyshev method is comparable, in terms of the accuracy obtained, with existing Chebyshev methods.

View Publication Preview PDF
Crossref
Publication Date
Fri Jun 12 2020
Journal Name
Test Engineering & Management
Studying the Optical Properties of CdSe Quantum Dots Prepared by Colloidal Method with Different pH Values
...Show More Authors

Preview PDF
Publication Date
Mon Apr 09 2018
Journal Name
Al-khwarizmi Engineering Journal
Creating Through Points in Linear Function with Parabolic Blends Path by Optimization Method
...Show More Authors

The linear segment with parabolic blend (LSPB) trajectory deviates from the specified waypoints. It is restricted to that the acceleration must be sufficiently high. In this work, it is proposed to engage modified LSPB trajectory with particle swarm optimization (PSO) so as to create through points on the trajectory. The assumption of normal LSPB method that parabolic part is centered in time around waypoints is replaced by proposed coefficients for calculating the time duration of the linear part. These coefficients are functions of velocities between through points. The velocities are obtained by PSO so as to force the LSPB trajectory passing exactly through the specified path points. Also, relations for velocity correction and exact v

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Dec 07 2014
Journal Name
Baghdad Science Journal
Convergence of the Generalized Homotopy Perturbation Method for Solving Fractional Order Integro-Differential Equations
...Show More Authors

In this paper,the homtopy perturbation method (HPM) was applied to obtain the approximate solutions of the fractional order integro-differential equations . The fractional order derivatives and fractional order integral are described in the Caputo and Riemann-Liouville sense respectively. We can easily obtain the solution from convergent the infinite series of HPM . A theorem for convergence and error estimates of the HPM for solving fractional order integro-differential equations was given. Moreover, numerical results show that our theoretical analysis are accurate and the HPM can be considered as a powerful method for solving fractional order integro-diffrential equations.

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Mar 23 2021
Journal Name
International Journal Of Energy Research
Localized heating element distribution in composite metal foam‐phase change material: Fourier's law and creeping flow effects
...Show More Authors

View Publication
Scopus (29)
Crossref (24)
Scopus Clarivate Crossref
Publication Date
Fri May 01 2020
Journal Name
Journal Of Physics: Conference Series
Recent modification of Homotopy perturbation method for solving system of third order PDEs
...Show More Authors

This paper presents new modification of HPM to solve system of 3 rd order PDEs with initial condition, for finding suitable accurate solutions in a wider domain.

Scopus (18)
Scopus
Publication Date
Tue Nov 30 2021
Journal Name
Iraqi Journal Of Science
Certain Types of Linear Codes over the Finite Field of Order Twenty-Five
...Show More Authors

The aim of the paper is to compute projective maximum distance separable codes, -MDS of two and three dimensions with certain lengths and Hamming weight distribution from the arcs in the projective line and plane over the finite field of order twenty-five. Also, the linear codes generated by an incidence matrix of points and lines of  were studied over different finite fields.  

View Publication Preview PDF
Scopus (3)
Scopus Crossref