The purpose of this work is to construct complete (k,n)-arcs in the projective 2-space PG(2,q) over Galois field GF(11) by adding some points of index zero to complete (k,n–1)arcs 3  n  11. A (k,n)-arcs is a set of k points no n + 1 of which are collinear. A (k,n)-arcs is complete if it is not contained in a (k + 1,n)-arc
The aim of this paper is to introduce the definition of projective 3-space over Galois field GF(q), q = pm, for some prime number p and some integer m.
Also the definitions of (k,n)-arcs, complete arcs, n-secants, the index of the point and the projectively equivalent arcs are given.
Moreover some theorems about these notations are proved.
The purpose of this paper is to give the definition of projective 3-space PG(3,q) over Galois field GF(q), q = pm for some prime number p and some integer m.
Also, the definition of the plane in PG(3,q) is given and state the principle of duality.
Moreover some theorems in PG(3,q) are proved.
Necessary and sufficient conditions for the operator equation I AXAX n  ï€* , to have a real positive definite solution X are given. Based on these conditions, some properties of the operator A as well as relation between the solutions X andAare given.
The main aims purpose of this study is to find the stabilizer groups of a cubic curves over a finite field of order 16, also studying the properties of their groups, and then constructing all different cubic curves, and known which one of them is complete or not. The arcs of degree 2 which are embedding into a cubic curves of even size have been constructed.
In this work, we construct projectively distinct (k,3)-arcs in the projective plane PG(2,9) by applying a geometrical method. The cubic curves have been been constructed by using the general equation of the cubic. We found that there are complete (13,3)-arcs, complete (15,3)-arcs and we found that the only (16,3)-arcs lead to maximum completeness
In this paper, the packing problem for complete ( 4)-arcs in is partially solved. The minimum and the maximum sizes of complete ( 4)-arcs in are obtained. The idea that has been used to do this classification is based on using the algorithm introduced in Section 3 in this paper. Also, this paper establishes the connection between the projective geometry in terms of a complete ( , 4)-arc in and the algebraic characteristics of a plane quartic curve over the field represented by the number of its rational points and inflexion points. In addition, some sizes of complete ( 6)-arcs in the projective plane of order thirteen are established, namely for = 53, 54, 55, 56.
The article describes a certain computation method of -arcs to construct the number of distinct -arcs in for . In this method, a new approach employed to compute the number of -arcs and the number of distinct arcs respectively. This approach is based on choosing the number of inequivalent classes } of -secant distributions that is the number of 4-secant, 3-secant, 2-secant, 1-secant and 0-secant in each process. The maximum size of -arc that has been constructed by this method is . The new method is a new tool to deal with the programming difficulties that sometimes may lead to programming problems represented by the increasing number of arcs. It is essential to reduce the established number of -arcs in each cons
... Show MoreIn modules there is a relation between supplemented and π-projective semimodules. This relation was introduced, explained and investigated by many authors. This research will firstly introduce a concept of "supplement subsemimodule" analogues to the case in modules: a subsemimodule Y of a semimodule W is said to be supplement of a subsemimodule X if it is minimal with the property X+Y=W. A subsemimodule Y is called a supplement subsemimodule if it is a supplement of some subsemimodule of W. Then, the concept of supplemented semimodule will be defined as follows: an S-semimodule W is said to be supplemented if every subsemimodule of W is a supplemen
... Show MoreA (b,t)-blocking set B in PG(2,q) is set of b points such that every line of PG(2,q) intersects B in at least t points and there is a line intersecting B in exactly t points. In this paper we construct a minimal (b,t)-blocking sets, t = 1,2,3,4,5 in PG(2,5) by using conics to obtain complete arcs and projective codes related with them.
Our research is related to the projective line over the finite field, in this paper, the main purpose is to classify the sets of size K on the projective line PG (1,31), where K = 3,…,7 the number of inequivalent K-set with stabilizer group by using the GAP Program is computed.