Preferred Language
Articles
/
jih-1238
Construction of Complete (k,n)-arcs in the Projective Plane PG(2,11) Over Galois Field GF(11), 3 ï‚£ n ï‚£ 11
...Show More Authors

        The purpose of this work is to construct complete (k,n)-arcs in the projective 2-space PG(2,q) over Galois field GF(11) by adding some points of index zero to complete (k,n–1)arcs 3 ï‚£ n ï‚£ 11.         A (k,n)-arcs is a set of k points no n + 1 of which are collinear.         A (k,n)-arcs is complete if it is not contained in a (k + 1,n)-arc

View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Dec 29 2016
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Some Results on The Complete Arcs in Three Dimensional Projective Space Over Galois Field
...Show More Authors

        The aim of this paper is to introduce the definition of projective 3-space over Galois field GF(q), q = pm, for some prime number p and some integer m.

        Also the definitions of (k,n)-arcs, complete arcs, n-secants, the index of the point and the projectively equivalent arcs are given.

        Moreover some theorems about these notations are proved.

 

View Publication Preview PDF
Publication Date
Thu May 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Projective 3-Space Over Galois Field
...Show More Authors

        The purpose of this paper is to give the definition of projective 3-space PG(3,q) over Galois field GF(q), q = pm for some prime number p and some integer m.

        Also, the definition of the plane in PG(3,q) is given and state the principle of duality.

        Moreover some theorems in PG(3,q) are proved.

View Publication Preview PDF
Publication Date
Thu Dec 29 2016
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Notes On The Non Linear Operator Equation I AXAX n  *
...Show More Authors

  Necessary and sufficient conditions for the operator equation I AXAX n  * , to have a real positive definite solution X are given. Based on these conditions, some properties of the operator A as well as relation between the solutions X andAare given.

View Publication Preview PDF
Publication Date
Thu Aug 30 2018
Journal Name
Iraqi Journal Of Science
Cubic arcs in the projective plane over a finite field of order 16
...Show More Authors

The main aims purpose of this study is to find the stabilizer groups of a cubic curves over a finite field of order 16, also studying the properties of their groups, and then constructing all different cubic curves, and known which one of them is complete or not. The arcs of degree 2 which are embedding into a cubic curves of even size have been constructed.  

View Publication Preview PDF
Publication Date
Thu Apr 27 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Construction of (k,3)-Arcs in PG(2,9) by Using Geometrical Method
...Show More Authors

  In this work, we construct projectively distinct (k,3)-arcs in the projective plane PG(2,9) by applying a geometrical method. The cubic curves have been been constructed by using the general equation of the cubic.         We found that there are complete (13,3)-arcs, complete (15,3)-arcs and we found that the only (16,3)-arcs lead to maximum completeness

View Publication Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
Baghdad Science Journal
New sizes of complete (k, 4)-arcs in PG(2,17)
...Show More Authors

              In this paper, the packing problem for complete (  4)-arcs in  is partially solved. The minimum and the maximum sizes of complete (  4)-arcs in  are obtained. The idea that has been used to do this classification is based on using the algorithm introduced in Section 3 in this paper. Also, this paper establishes the connection between the projective geometry in terms of a complete ( , 4)-arc in  and the algebraic characteristics of a plane quartic curve over the field  represented by the number of its rational points and inflexion points. In addition, some sizes of complete (  6)-arcs in the projective plane of order thirteen are established, namely for  = 53, 54, 55, 56.

View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
A complete (48, 4)-arc in the Projective Plane Over the Field of Order Seventeen
...Show More Authors

            The article describes a certain computation method of -arcs to construct the number of distinct -arcs in  for . In this method, a new approach employed to compute the number of -arcs and the number of distinct arcs respectively. This approach is based on choosing the number of inequivalent classes } of -secant distributions that is the number of 4-secant, 3-secant, 2-secant, 1-secant and 0-secant in each process. The maximum size of -arc that has been constructed by this method is . The new method is a new tool to deal with the programming difficulties that sometimes may lead to programming problems represented by the increasing number of arcs. It is essential to reduce the established number of -arcs in each cons

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Sat Jun 27 2020
Journal Name
Iraqi Journal Of Science
Supplemented and π-Projective Semimodules
...Show More Authors

In modules there is a relation between supplemented and Ï€-projective semimodules. This relation was introduced, explained and investigated by many authors. This research will firstly introduce a concept of "supplement subsemimodule" analogues to the case in modules: a subsemimodule Y of a semimodule W is said to be supplement of  a subsemimodule X if it is minimal with the property X+Y=W. A subsemimodule Y is called a supplement subsemimodule if it is a supplement of some subsemimodule of W. Then, the concept of supplemented semimodule will be defined as follows: an S-semimodule W is said to be supplemented if every subsemimodule of W is a supplemen

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Fri Mar 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Construction of Minimal (b,t)-Blocking Sets Containing Conics in PG(2,5) with the Complete Arcs and Projective Codes Related with Them
...Show More Authors

A (b,t)-blocking set B in PG(2,q) is set of b points such that every line of PG(2,q) intersects B in at least t points and there is a line intersecting B in exactly t points. In this paper we construct a minimal (b,t)-blocking sets, t = 1,2,3,4,5 in PG(2,5) by using conics to obtain complete arcs and projective codes related with them.

View Publication Preview PDF
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Classification of the Projective Line over Galois Field of Order 31
...Show More Authors

Our research is related to the projective line over the finite field, in this paper, the main purpose is to classify the sets of size K on the projective line PG (1,31), where K = 3,…,7 the number of inequivalent K-set with stabilizer group by using the GAP Program is computed.

View Publication
Scopus Crossref