The definition of semi-preopen sets were first introduced by "Andrijevic" as were is defined by :Let (X , ï´ ) be a topological space, and let A ⊆, then Ais called semi-preopen set if ⊆∘ . In this paper, we study the properties of semi-preopen sets but by another definition which is equivalent to the first definition and we also study the relationships among it and (open, α-open, preopen and semi-p-open )sets.
In this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise Lindelöf and locally Lindelöf topological spaces, which are generalizations of will-known concepts: Lindelöf topological space (1) "A topological space X is called a Lindelöf space if for every open cover of X has a countable subcover" and locally Lindelöf topological space (1) "A topological space X is called a locally Lindelöf space if for every point x in X, there exist a nbd U of x such that the closure of U in X is Lindelöf space". Either the new concepts are: "A fibrewise topological space X over B is called a fibrewise Lindelöf if the projection function p : X→B is Lindelöf" and "The fibrewise topological space X over B
... Show More-convex sets and -convex functions, which are considered as an important class of generalized convex sets and convex functions, have been introduced and studied by Youness [5] and other researchers. This class has recently extended, by Youness, to strongly -convex sets and strongly -convex functions. In these generalized classes, the definitions of the classical convex sets and convex functions are relaxed and introduced with respect to a mapping . In this paper, new properties of strongly -convex sets are presented. We define strongly -convex hull, strongly -convex cone, and strongly -convex cone hull and we proof some of their properties. Some examples to illustrate the aforementioned concepts and to cl
... Show MoreIn this paper, we proved that if R is a prime ring, U be a nonzero Lie ideal of R , d be a nonzero (?,?)-derivation of R. Then if Ua?Z(R) (or aU?Z(R)) for a?R, then either or U is commutative Also, we assumed that Uis a ring to prove that: (i) If Ua?Z(R) (or aU?Z(R)) for a?R, then either a=0 or U is commutative. (ii) If ad(U)=0 (or d(U)a=0) for a?R, then either a=0 or U is commutative. (iii) If d is a homomorphism on U such that ad(U) ?Z(R)(or d(U)a?Z(R), then a=0 or U is commutative.
Let ℛ be a commutative ring with unity and let ℬ be a unitary R-module. Let ℵ be a proper submodule of ℬ, ℵ is called semisecond submodule if for any r∈ℛ, r≠0, n∈Z+, either rnℵ=0 or rnℵ=rℵ.
In this work, we introduce the concept of semisecond submodule and confer numerous properties concerning with this notion. Also we study semisecond modules as a popularization of second modules, where an ℛ-module ℬ is called semisecond, if ℬ is semisecond submodul of ℬ.
In this paper, the concept of soft closed groups is presented using the soft ideal pre-generalized open and soft pre-open, which are -ᶅ- - -closed sets " -closed", Which illustrating several characteristics of these groups. We also use some games and - Separation Axiom, such as (Ʈ0, Ӽ, ᶅ) that use many tables and charts to illustrate this. Also, we put some proposals to study the relationship between these games and give some examples.
In this article, the partially ordered relation is constructed in geodesic spaces by betweeness property, A monotone sequence is generated in the domain of monotone inward mapping, a monotone inward contraction mapping is a monotone Caristi inward mapping is proved, the general fixed points for such mapping is discussed and A mutlivalued version of these results is also introduced.
The main objective of this paper is to find the order and its exponent, the general form of all conjugacy classes, Artin characters table and Artin exponent for the group of lower unitriangular matrices L(3,? p ), where p is prime number.
The restriction concept is a basic feature in the field of measure theory and has many important properties. This article introduces the notion of restriction of a non-empty class of subset of the power set on a nonempty subset of a universal set. Characterization and examples of the proposed concept are given, and several properties of restriction are investigated. Furthermore, the relation between the P*–field and the restriction of the P*–field is studied, explaining that the restriction of the P*–field is a P*–field too. In addition, it has been shown that the restriction of the P*–field is not necessarily contained in the P*–field, and the converse is true. We provide a necessary condition for the P*–field to obtain th
... Show MoreIn this research, a new application has been developed for games by using the generalization of the separation axioms in topology, in particular regular, Sg-regular and SSg- regular spaces. The games under study consist of two players and the victory of the second player depends on the strategy and choice of the first player. Many regularity, Sg, SSg regularity theorems have been proven using this type of game, and many results and illustrative examples have been presented