The definition of semi-preopen sets were first introduced by "Andrijevic" as were is defined by :Let (X , ï´ ) be a topological space, and let A ⊆, then A is called semi-preopen set if ⊆∘ . In this paper, we study the properties of semi-preopen sets but by another definition which is equivalent to the first definition and we also study the relationships among it and (open, α-open, preopen and semi-p-open )sets.
In this work, new kinds of blocking sets in a projective plane over Galois field PG(2,q) can be obtained. These kinds are called the complete blocking set and maximum blocking set. Some results can be obtained about them.
The effect of thickness variation on some physical properties of hematite α-Fe2O3 thin films was investigated. An Fe2O3 bulk in the form of pellet was prepared by cold pressing of Fe2O3 powder with subsequent sintering at 800 . Thin films with various thicknesses were obtained on glass substrates by pulsed laser deposition technique. The films properties were characterized by XRD, and FT-IR. The deposited iron oxide thin films showed a single hematite phase with polycrystalline rhombohedral crystal structure .The thickness of films were estimated by using spectrometer to be (185-232) nm. Using Debye Scherrerś formula, the average grain size for the samples was found to be (18-32) nm. Atomic force microscopy indicated that the films had
... Show More"In this article, "we introduce the concept of a WE-Prime submodule", as a stronger form of a weakly prime submodule". "And as a "generalization of WE-Prime submodule", we introduce the concept of WE-Semi-Prime submodule, which is also a stronger form of a weakly semi-prime submodule". "Various basic properties of these two concepts are discussed. Furthermore, the relationships between "WE-Prime submodules and weakly prime submodules" and studied". "On the other hand the relation between "WE-Prime submodules and WE-Semi-Prime submodules" are consider". "Also" the relation of "WE-Sime-Prime submodules and weakly semi-prime submodules" are explained. Behind that, some characterizations of these concepts are investigated".
... Show MoreThe aim of this paper is to introduce and study new class of fuzzy function called fuzzy semi pre homeomorphism in a fuzzy topological space by utilizing fuzzy semi pre-open sets. Therefore, some of their characterization has been proved; In addition to that we define, study and develop corresponding to new class of fuzzy semi pre homeomorphism in fuzzy topological spaces using this new class of functions.
The x-ray fluorescence (XRF) of Znpc molecule with (flow of Ar) and Znpc molecule with (grow in N2) showed two peaks at (8.5and 9.5 Kv) referring to orbital transition ) K?-shell & K?-shell) respectively. The study of x-ray diffraction (XRD) where it was observed good growth of the crystal structure as a needle by the sublimation technique with a ?-phase of (monoclinic structure ) . Using Bragg equation the value of the interdistance of the crystalline plane (d-value) were calculated. We noticed good similarity with like once in the American Standards for Testing Material (ASTM) .Powder Diffraction File (PDF) Program was used to ensure the information obtained from (ASTM) . The output of (PDF) was compared with celn program, where the val
... Show MoreThe purpose of this paper is to study a new types of compactness in the dual bitopological spaces. We shall introduce the concepts of L-pre- compactness and L-semi-P- compactness .
In this research and by using the concept of , a new set of near set which is nano-Ἷ-semi-g-closed set was defined. Some properties and examples with illustrative table and an applied example were presented.
This research aims to present some results for conceptions of quasi -hyponormal operator defined on Hilbert space . Signified by the -operator, together with some significant characteristics of this operator and various theorems pertaining to this operator are discussed, as well as, we discussed the null space and range of these kinds of operators.
In projective plane over a finite field q F , a conic is the unique complete
(q 1) arc and any arcs on a conic are incomplete arc of degree less than q 1.
These arcs correspond to sets in the projective line over the same field. In this paper,
The number of inequivalent incomplete k arcs; k 5,6, ,12, on the conic in
PG(2,23) and stabilizer group types are found. Also, the projective line
PG(1,23) has been splitting into two 12-sets and partitioned into six disjoint
tetrads.