The definition of semi-preopen sets were first introduced by "Andrijevic" as were is defined by :Let (X , ï´ ) be a topological space, and let A ⊆, then A is called semi-preopen set if ⊆∘ . In this paper, we study the properties of semi-preopen sets but by another definition which is equivalent to the first definition and we also study the relationships among it and (open, α-open, preopen and semi-p-open )sets.
Researchers have identified and defined β- approach normed space if some conditions are satisfied. In this work, we show that every approach normed space is a normed space.However, the converse is not necessarily true by giving an example. In addition, we define β – normed Banach space, and some examples are given. We also solve some problems. We discuss a finite β-dimensional app-normed space is β-complete and consequent Banach app- space. We explain that every approach normed space is a metric space, but the converse is not true by giving an example. We define β-complete and give some examples and propositions. If we have two normed vector spaces, then we get two properties that are equivalent. We also explain that
... Show More
We apply a semi classical partial-wave scattering method based on the induced density approach (IDA) model. For ion electron scattering, the transport cross section is used to calculate the energy loss. This method yields a non-perturbative exemplification of energy loss, bridging the difference among classical and quantal representations. The focus of this work is the interaction of hetero nuclear di-cluster (He-H) ions with a free gas. The results show three kinds of stopping power in (a.u) (cluster stopping power, self-stopping power and correlated stopping power) of hetero nuclear di-cluster ions (He-H) with velocity at different atomic di-cluster distances at different densities and temperatures. We find that Bragg’
... Show MoreThe concept of semi-essential semimodule has been studied by many researchers.
In this paper, we will develop these results by setting appropriate conditions, and defining new properties, relating to our concept, for example (fully prime semimodule, fully essential semimodule and semi-complement subsemimodule) such that: if for each subsemimodule of -semimodule is prime, then is fully prime. If every semi-essential subsemimodule of -semimodule is essential then is fully essential. Finally, a prime subsemimodule of is called semi-relative intersection complement (briefly, semi-complement) of subsemimodule in , if , and whenever with is a prime subsemimodule in , , then . Furthermore, some res
... Show More