A (k,n)-arc A in a finite projective plane PG(2,q) over Galois field GF(q), q=p⿠for same prime number p and some integer n≥2, is a set of k points, no n+1 of which are collinear. A (k,n)-arc is complete if it is not contained in a(k+1,n)-arc. In this paper, the maximum complete (k,n)-arcs, n=2,3 in PG(2,4) can be constructed from the equation of the conic.
Many numerical approaches have been suggested to solve nonlinear problems. In this paper, we suggest a new two-step iterative method for solving nonlinear equations. This iterative method has cubic convergence. Several numerical examples to illustrate the efficiency of this method by Comparison with other similar methods is given.
In this paper, we consider a new approach to solve type of partial differential equation by using coupled Laplace transformation with decomposition method to find the exact solution for non–linear non–homogenous equation with initial conditions. The reliability for suggested approach illustrated by solving model equations such as second order linear and nonlinear Klein–Gordon equation. The application results show the efficiency and ability for suggested approach.
The aim of this paper is to present a method for solving of system of first order initial value problems of ordinary differential equation by a semi-analytic technique with constructing polynomial solutions for decreasing dangers of lead. The original problem is concerned using two-point osculatory interpolation with the fit equals numbers of derivatives at the end points of an interval [0 , 1].
A numerical method is developed for calculation of the wake geometry and aerodynamic forces on two-dimensional airfoil under going an arbitrary unsteady motion in an inviscid incompressible flow (panel method). The method is applied to sudden change in airfoil incidence angle and airfoil oscillations at high reduced frequency. The effect of non-linear wake on the unsteady aerodynamic properties and oscillatory amplitude on wake rollup and aerodynamic forces has been studied. The results of the present method shows good accuracy as compared with flat plate and for unsteady motion with heaving and pitching oscillation the present method also shows good trend with the experimental results taken from published data. The method shows good result
... Show MoreThe Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solutions for travelling waves of
... Show MoreThe main object of this study is to solve a system of nonlinear ordinary differential equations (ODE) of the first order governing the epidemic model using numerical methods. The application under study is a mathematical epidemic model which is the influenza model at Australia in 1919. Runge-kutta methods of order 4 and of order 45 for solving this initial value problem(IVP) problem have been used. Finally, the results obtained have been discussed tabularly and graphically.
The sensitive and important data are increased in the last decades rapidly, since the tremendous updating of networking infrastructure and communications. to secure this data becomes necessary with increasing volume of it, to satisfy securing for data, using different cipher techniques and methods to ensure goals of security that are integrity, confidentiality, and availability. This paper presented a proposed hybrid text cryptography method to encrypt a sensitive data by using different encryption algorithms such as: Caesar, Vigenère, Affine, and multiplicative. Using this hybrid text cryptography method aims to make the encryption process more secure and effective. The hybrid text cryptography method depends on circular queue. Using circ
... Show MoreRecently, Image enhancement techniques can be represented as one of the most significant topics in the field of digital image processing. The basic problem in the enhancement method is how to remove noise or improve digital image details. In the current research a method for digital image de-noising and its detail sharpening/highlighted was proposed. The proposed approach uses fuzzy logic technique to process each pixel inside entire image, and then take the decision if it is noisy or need more processing for highlighting. This issue is performed by examining the degree of association with neighboring elements based on fuzzy algorithm. The proposed de-noising approach was evaluated by some standard images after corrupting them with impulse
... Show MoreThe goal of this research is to develop a numerical model that can be used to simulate the sedimentation process under two scenarios: first, the flocculation unit is on duty, and second, the flocculation unit is out of commission. The general equation of flow and sediment transport were solved using the finite difference method, then coded using Matlab software. The result of this study was: the difference in removal efficiency between the coded model and operational model for each particle size dataset was very close, with a difference value of +3.01%, indicating that the model can be used to predict the removal efficiency of a rectangular sedimentation basin. The study also revealed